Aline Kowalski-Chauvel
Paul Sabatier University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aline Kowalski-Chauvel.
Journal of Biological Chemistry | 2005
Audrey Ferrand; Aline Kowalski-Chauvel; Claudine Bertrand; Chantal Escrieut; Anne Mathieu; Ghislaine Portolan; Lucien Pradayrol; Daniel Fourmy; Marlène Dufresne; Catherine Seva
To date very few G protein-coupled receptors (GPCRs) have been shown to be connected to the Janus kinase (JAK)/STAT pathway. Thus our understanding of the mechanisms involved in the activation of this signaling pathway by GPCRs remains limited. In addition, little is known about the role of the JAK pathway in the physiological or pathophysiological functions of GPCRs. Here, we described a new mechanism of JAK activation that involves Gαq proteins. Indeed, transfection of a constitutively activated mutant of Gαq (Q209L) in COS-7 cells demonstrated that Gαq is able to associate and activate JAK2. In addition, we showed that this mechanism is used to activate JAK2 by a GPCR principally coupled to Gq, the CCK2 receptor (CCK2R), and involves a highly conserved sequence in GPCRs, the NPXXY motif. In a pancreatic tumor cell line expressing the endogenous CCK2R, we demonstrated the activation of the JAK2/STAT3 pathway by this receptor and the involvement of this signaling pathway in the proliferative effects of the CCK2R. In addition, we showed in vivo that the targeted CCK2R expression in pancreas of Elas-CCK2 mice leads to the activation of JAK2 and STAT3. This process may contribute to the increase of pancreas growth as well as the formation of preneoplastic lesions leading to pancreatic tumor development observed in these transgenic animals.
Oncogene | 2002
Christiane Bierkamp; Aline Kowalski-Chauvel; Stéphanie Dehez; Daniel Fourmy; Lucien Pradayrol; Catherine Seva
The presence of gastrin and CCK-2/gastrin receptors in human preneoplastic and neoplastic lesions of pancreas and colon suggests a role in cancer development. Gastrins growth-promoting action has been established, but a role in cellular morphogenetic processes promoting tumor invasion has been elusive. Our aim was (i) to investigate whether activation of the CCK-2R affects cellular morphology, intercellular adhesion and motility, as crucial parameters of epithelial differentiation, and (ii) to identify the signaling pathways and mechanisms implicated. Madin-Darby Canine Kidney (MDCK) cells were chosen to generate an epithelial non-tumorigenic model system expressing human CCK-2R. Epithelial differentiation and motility were analysed upon CCK-2R activation using immunocytochemistry and invasion assays. The functionality of adhesion complexes and activity of signaling proteins was determined with biochemical techniques. CCK-2R activation induced cell dissociation and enhanced invasion, preceded by decreased membrane localization of adherens junction molecules and nuclear accumulation of β-catenin. Concomitantly, and requiring the activation of several signaling pathways, catenins were shifted from the cytoskeletal to the cytoplasmic fraction, suggesting the detachment of the cytoskeleton from the adherens complex. These data represent the first evidence for the CCK-2R, regulating cell–cell and cell–substrate adhesion and support a role for CCK-2R in the progression of carcinoma.
Oncogene | 1998
Stéphane Pyronnet; Anne-Claude Gingras; Michèle Bouisson; Aline Kowalski-Chauvel; Catherine Seva; Nicole Vaysse; Nahum Sonenberg; Lucien Pradayrol
Gastrin via its G-protein coupled specific receptor induces transcription of c-fos and c-jun genes through a ras-MAPK pathway. Ornithine Decarboxylase (ODC), a growth regulated proto-oncogene, was chosen to investigate gastrin effects on translation initiation of mRNAs exhibiting a 5′UnTranslated Region (5′UTR) responsible for translation repression in quiescent cells. In AR4-2J tumoral cells, we first demonstrated that gastrin increases ODC mRNA translation. Transient transfections with various CAT chimeric constructs suggested a direct involvement of the 5′UTR in this observation. Translation of this group of mRNAs is enhanced by the availability of the cap-binding protein (eIF4E) that is increased after phosphorylation of its specific binding protein eIF4E-BP1. We found that AR4-2J cells overexpressed eIF4E protein which was not modulated by gastrin treatment. Rapamycin which inhibits 4E-BP1 phosphorylation, completely prevents gastrin-mediated increase of ODC translation indicating that 4E-BP1 could be involved in regulating ODC translation. Implication of 4E-BP1 in mediating gastrin effects is corroborated by the capacity of the ligand to affect 4E-BP1 phosphorylation. These results indicate that gastrin enhances ornithine decarboxylase mRNA translation through a rapamycin sensitive pathway and provide the first evidence in the control of 4E-BP1 phosphorylation after occupancy of a G protein-coupled receptor.
Journal of Biological Chemistry | 2012
Aline Kowalski-Chauvel; Souad Najib; Irina G. Tikhonova; Laurence Huc; Frédéric Lopez; Laurent O. Martinez; Elizabeth Cohen-Jonathan-Moyal; Audrey Ferrand; Catherine Seva
Background: The F1 domain of F1Fo-ATPase was initially believed to be strictly expressed in the mitochondrial membrane. Results: F1-ATPase is present at the cell surface of colonic epithelial cells and serves as a receptor for a gastrointestinal peptide mediating cell growth. Conclusion: We identified a new localization and a new function for the F1-ATPase in colonic cells. Significance: Cell surface F1-ATPase represents a new target in anti-proliferative strategies. F1 domain of F1Fo-ATPase was initially believed to be strictly expressed in the mitochondrial membrane. Interestingly, recent reports have shown that the F1 complex can serve as a cell surface receptor for apparently unrelated ligands. Here we show for the first time the presence of the F1-ATPase at the cell surface of normal or cancerous colonic epithelial cells. Using surface plasmon resonance technology and mass spectrometry, we identified a peptide hormone product of the gastrin gene (glycine-extended gastrin (G-gly)) as a new ligand for the F1-ATPase. By molecular modeling, we identified the motif in the peptide sequence (E(E/D)XY), that directly interacts with the F1-ATPase and the amino acids in the F1-ATPase that bind this motif. Replacement of the Glu-9 residue by an alanine in the E(E/D)XY motif resulted in a strong decrease of G-gly binding to the F1-ATPase and the loss of its biological activity. In addition we demonstrated that F1-ATPase mediates the growth effects of the peptide. Indeed, blocking F1-ATPase activity decreases G-gly-induced cell growth. The mechanism likely involves ADP production by the membrane F1-ATPase, which is induced by G-gly. These results suggest an important contribution of cell surface F1-ATPase in the pro-proliferative action of this gastrointestinal peptide.
World Journal of Gastroenterology | 2011
Celine Cayrol; Claudine Bertrand; Aline Kowalski-Chauvel; Laurence Daulhac; Elizabeth Cohen-Jonathan-Moyal; Audrey Ferrand; Catherine Seva
AIMnTo analyse αv integrin expression induced by gastrin in pancreatic cancer models.nnnMETHODSnαv integrin mRNA expression in human pancreatic cancer cells was analysed using a cancer genes array and confirmed by real-time reverse transcription-polymerase chain reaction (PCR). Western blotting and semi-quantitative immunohistochemistry were used to examine protein levels in human pancreatic cancer cell lines and pancreatic tissues, respectively. The role of αv integrin on gastrin-induced cell adhesion was examined using blocking anti-αv integrin monoclonal antibodies. Adherent cells were quantified by staining with crystal violet.nnnRESULTSnUsing a cancer genes array we identified αv integrin as a new gastrin target gene in human pancreatic cancer cells. A quantitative real-time PCR approach was used to confirm αv integrin gene expression. We also demonstrate that Src family kinases and the PI 3-kinase, two signalling pathways specifically activated by the CCK-2 receptor (CCK2R), are involved in gastrin-mediated αv integrin expression. In contrast, inhibition of the ERK pathway was without any effect on αv integrin expression induced by gastrin. Our results also show that gastrin modulates cell adhesion via αv integrins. Indeed, in vitro adhesion assays performed on fibronectin show that gastrin significantly increases adhesion of pancreatic cancer cells. The use of blocking anti-αv integrin monoclonal antibodies completely reversed the increase in cell-substrate adhesion induced by gastrin. In addition, we showed in vivo that the targeted CCK2R expression in the pancreas of Elas-CCK2 mice, leads to the overexpression of αv integrin. This process may contribute to pancreatic tumour development observed in these transgenic animals.nnnCONCLUSIONnαv integrin is a new gastrin target in pancreatic cancer models and contributes to gastrin effects on cell adhesion.
Oncogene | 2015
S Najib; Aline Kowalski-Chauvel; C Do; Serge Roche; E Cohen-Jonathan-Moyal; C Seva
Angiogenesis is essential in tumor progression and metastatic process, and increased angiogenesis has been associated with poor prognosis and relapse of colorectal cancer (CRC). VEGF has become the main target of anti-angiogenic therapy. However, most patients relapse after an initial response or present a resistance to the treatment. Identification of new pro-angiogenic factors may help to improve anti-angiogenic therapy. In this study, we demonstrated that the pro-hormone progastrin (PG), over-expressed in CRC, recognized as a growth factor, is a potent pro-angiogenic factor. In transgenic mice and human colorectal HPs producing high levels of PG, we correlated PG overexpression with an increased vascularization. In vitro, exogenous PG and conditioned media (CM) from CRC cells producing PG increased endothelial cell proliferation and migration. We also showed that treatment with exogenous PG can increase the ability of endothelial cells to form capillary-like structures. Moreover, we demonstrated that PG enhanced endothelial permeability. The finding that PG stimulated the phosphorylation of vascular endothelial (VE)-cadherin, p125-FAK, paxillin and induced actin remodelling was consistent with a role of these components in PG-stimulated endothelial cell migration and permeability. The pro-angiogenic effects observed with CM were significantly inhibited when CRC cells expressed a PG shRNA. In vivo, we found an important decrease in tumor growth and neovascularization when the CRC cells expressing the PG shRNA were xenografted in mice or in the chick chorioallantoic membrane model. We also observed an increase in the coverage of blood vessels by pericytes and a decrease in endothelial permeability when PG expression was blocked. Our results demonstrate that PG is a new pro-angiogenic factor in CRC and an attractive therapeutic target.
Oncotarget | 2017
Laure Malric; Sylvie Monferran; Julia Gilhodes; Sabrina Boyrie; Perrine Dahan; Nicolas Skuli; Julie Sesen; Thomas Filleron; Aline Kowalski-Chauvel; Elizabeth Cohen-Jonathan Moyal; Christine Toulas; Anthony Lemarié
Glioblastomas are malignant brain tumors with dismal prognosis despite standard treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a particular subpopulation of Glioblastoma-initiating cells, which recapitulate the heterogeneity of the original Glioblastoma. In order to classify these heterogeneous tumors, genomic profiling has also been undertaken to classify these heterogeneous tumors into several subtypes. Current research focuses on developing therapies, which could take into account this cellular and genomic heterogeneity. Among these targets, integrins are the subject of numerous studies since these extracellular matrix transmembrane receptors notably controls tumor invasion and progression. Moreover, some of these integrins are considered as membrane markers for the Glioblastoma-initiating cells subpopulation. We reviewed here integrin expression according to glioblastoma molecular subtypes and cell heterogeneity. We discussed their roles in glioblastoma invasion, angiogenesis, therapeutic resistance, stemness and microenvironment modulations, and provide an overview of clinical trials investigating integrins in glioblastomas. This review highlights that specific integrins could be identified as selective glioblastoma cells markers and that their targeting represents new diagnostic and/or therapeutic strategies.
Oncotarget | 2017
Aline Kowalski-Chauvel; Valérie Gouazé-Andersson; Alix Vignolle-Vidoni; Caroline Delmas; Christine Toulas; Elizabeth Cohen-Jonathan-Moyal; Catherine Seva
A high percentage of advanced rectal cancers are resistant to radiation. Therefore, increasing the efficacy of radiotherapy by targeting factors involved in radioresistance seems to be an attractive strategy. Here we demonstrated that the pro-hormone progastrin (PG), known to be over-expressed in CRC, and recognized as a pro-oncogenic factor, is a radioresistance factor that can be targeted to sensitize resistant rectal cancers to radiations. First, we observed an increase in PG mRNA expression under irradiation. Our results also demonstrated that down-regulating PG mRNA expression using a shRNA strategy, significantly increases the sensitivity to irradiation (IR) in a clonogenic assay of different colorectal cancer cell lines. We also showed that the combination of PG gene down-regulation and IR strongly inhibits tumour progression in vivo. Then, we demonstrated that targeting PG gene radiosensitizes cancer cells by increasing radio-induced apoptosis shown by an increase in annexin V positive cells, caspases activation and PARP cleavage. We also observed the up-regulation of the pro-apoptotic pathway, JNK and the induction of the expression of pro-apoptotic factors such as BIM. In addition, we demonstrated in this study that inhibition of PG gene expression enhances radiation-induced DNA damage. Our data also suggest that, in addition to increase radio-induced apoptosis, targeting PG gene also leads to the inhibition of the survival pathways, AKT and ERK induced by IR.Taken together, our results highlight the role of PG in radioresistance and provide a preclinical proof of concept that PG represents an attractive target for sensitizing resistant rectal tumours to irradiation.u2003.A high percentage of advanced rectal cancers are resistant to radiation. Therefore, increasing the efficacy of radiotherapy by targeting factors involved in radioresistance seems to be an attractive strategy. Here we demonstrated that the pro-hormone progastrin (PG), known to be over-expressed in CRC, and recognized as a pro-oncogenic factor, is a radioresistance factor that can be targeted to sensitize resistant rectal cancers to radiations. First, we observed an increase in PG mRNA expression under irradiation. Our results also demonstrated that down-regulating PG mRNA expression using a shRNA strategy, significantly increases the sensitivity to irradiation (IR) in a clonogenic assay of different colorectal cancer cell lines. We also showed that the combination of PG gene down-regulation and IR strongly inhibits tumours progression in vivo. Then, we demonstrated that targeting PG gene radiosensitizes cancer cells by increasing radio-induced apoptosis shown by an increase in annexin V positive cells, caspases activation and PARP cleavage. We also observed the up-regulation of the pro-apoptotic pathway, JNK and the induction of the expression of pro-apoptotic factors such as BIM. In addition, we demonstrated in this study that inhibition of PG gene expression enhances radiation-induced DNA damage. Our data also suggest that, in addition to increase radio-induced apoptosis, targeting PG gene also leads to the inhibition of the survival pathways, AKT and ERK induced by IR. Taken together, our results highlight the role of PG in radioresistance and provide a preclinical proof of concept that PG represents an attractive target for sensitizing resistant rectal tumours to irradiation.u2003
Gastroenterology | 2000
Céline Galés; Aline Kowalski-Chauvel; Marie-Noelle Dufour; Catherine Seva; Luis Moroder; Lucien Pradayrol; Nicole Vaysse; Daniel Fourmy; Sandrine Silvente-Poirot
Among the most conserved regions in the G-protein-coupled receptors is the (N/D)PX(2-3)Y motif of the seventh transmembrane domain (X represents any amino acid). The mutation of the Asn/Asp residue of this motif in different G-protein-coupled receptors was shown to affect the activation of either adenylyl cyclase or phospholipase C. We have mutated the Asn residue (Asn-391) of the NPXXY motif in the CCKBR to Ala and determined the effects of the mutation on binding, signaling, and G-proteins coupling after expression of the mutated receptor in COS cells. The mutated receptor displayed similar expression levels and high affinity CCK binding compared with the wild type CCKBR. However, unlike the wild type CCKBR, the mutated receptor was completely unable to mediate activation of either phospholipase C and protein kinase C-dependent and -independent mitogen-activated protein kinase pathways, indicating an essential role of Asn-391 in CCKBR signaling. Coimmunoprecipitation experiments allowed us to show that the inactive mutant retains an intact capacity to form stable complexes with G(q)alpha subunits in response to CCK. These results indicate that the formation of high affinity CCK-receptor-G(q) protein complexes is not sufficient to activate G(q) and suggest that Asn-391 is specifically involved in G(q) proteins activation.
Cell Growth & Differentiation | 2002
Stéphanie Dehez; Christiane Bierkamp; Aline Kowalski-Chauvel; Laurence Daulhac; Chantal Escrieut; Christiane Susini; Lucien Pradayrol; Daniel Fourmy; Catherine Seva