Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aling Shen is active.

Publication


Featured researches published by Aling Shen.


International Journal of Molecular Sciences | 2012

Hedyotis diffusa Willd Inhibits Colorectal Cancer Growth in Vivo via Inhibition of STAT3 Signaling Pathway

Qiaoyan Cai; Jiumao Lin; Lihui Wei; Ling Zhang; Lili Wang; Youzhi Zhan; Jianwei Zeng; Wei Xu; Aling Shen; Zhenfeng Hong; Jun Peng

Signal Transducer and Activator of Transcription 3 (STAT3), a common oncogenic mediator, is constitutively activated in many types of human cancers; therefore it is a major focus in the development of novel anti-cancer agents. Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). However, the precise mechanism of its anti-tumor activity remains largely unclear. Using a CRC mouse xenograft model, in the present study we evaluated the effect of the ethanol extract of Hedyotis diffusa Willd (EEHDW) on tumor growth in vivo and investigated the underlying molecular mechanisms. We found that EEHDW reduced tumor volume and tumor weight, but had no effect on body weight gain in CRC mice, demonstrating that EEHDW can inhibit CRC growth in vivo without apparent adverse effect. In addition, EEHDW treatment suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax. These results suggest that suppression of the STAT3 pathway might be one of the mechanisms by which EEHDW treats colorectal cancer.


International Journal of Molecular Sciences | 2012

Scutellaria barbata D. Don Inhibits Tumor Angiogenesis via Suppression of Hedgehog Pathway in a Mouse Model of Colorectal Cancer

Lihui Wei; Jiumao Lin; Wei Xu; Qiaoyan Cai; Aling Shen; Zhenfeng Hong; Jun Peng

Angiogenesis, which plays a critical role during tumor development, is tightly regulated by the Sonic Hedgehog (SHH) pathway, which has been known to malfunction in many types of cancer. Therefore, inhibition of angiogenesis via modulation of the SHH signaling pathway has become very attractive for cancer chemotherapy. Scutellaria barbata D. Don (SB) has long been used in China to treat various cancers including colorectal cancer (CRC). Our published data suggested that the ethanol extract of SB (EESB) is able to induce apoptosis of colon cancer cells and inhibit angiogenesis in a chick embryo chorioallantoic membrane model. To further elucidate the precise mechanisms of its anti-tumor activity, in the present study we used a CRC mouse xenograft model to evaluate the effect of EESB on tumor growth and angiogenesis in vivo. Our current data indicated that EESB reduces tumor size without affecting on the body weight gain in CRC mice. In addition, EESB treatment suppresses the expression of key mediators of the SHH pathway in tumor tissues, which in turn resulted in the inhibition of tumor angiogenesis. Furthermore, EESB treatment inhibits the expression of vascular endothelial growth factor A (VEGF-A), an important target gene of SHH signaling and functioning as one of the strongest stimulators of angiogenesis. Our findings suggest that inhibition of tumor angiogenesis via suppression of the SHH pathway might be one of the mechanisms by which Scutellaria barbata D. Don can be effective in the treatment of cancers.


International Journal of Oncology | 2013

Hedyotis diffusa Willd extract suppresses Sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis

Jiumao Lin; Lihui Wei; Aling Shen; Qiaoyan Cai; Wei Xu; Huang Li; Youzhi Zhan; Zhenfeng Hong; Jun Peng

Sonic hedgehog (SHH) signaling pathway promotes the process of angiogenesis, contributing to the growth and progression of many human malignancies including colorectal cancer (CRC), which therefore has become a promising target for cancer chemotherapy. Hedyotis diffusa Willd (HDW), as a well-known traditional Chinese herbal medicine, has long been used in China for the clinic treatment of various cancers. Recently, we reported that HDW can inhibit colorectal cancer growth in vivo and in vitro via suppression of the STAT3 pathway. In addition, we demonstrated the anti-angiogenic activity of HDW in vitro. To further elucidate the mechanism of the tumoricidal activity of HDW, by using a CRC mouse xenograft model we evaluated the in vivo effect of the ethanol extract of HDW (EEHDW) on tumor angiogenesis, and investigated the underlying molecular mechanisms. We found that EEHDW could significantly reduce intratumoral microvessel density (MVD), indicating its activity of antitumor angiogenesis in vivo. EEHDW suppressed the activation of SHH signaling in CRC xenograft tumors since it significantly decreased the expression of key mediators of SHH pathway. EEHDW treatment inhibited the expression of the critical SHH signaling target gene VEGF-A as well as its specific receptor VEGFR2. Taken together, we propose for the first time that Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of SHH-mediated tumor angiogenesis.


International Journal of Oncology | 2012

Pien Tze Huang inhibits tumor cell proliferation and promotes apoptosis via suppressing the STAT3 pathway in a colorectal cancer mouse model.

Qunchuan Zhuang; Fei Hong; Aling Shen; Liangpu Zheng; Jianwei Zeng; Wei Lin; Youqin Chen; Thomas J. Sferra; Zhenfeng Hong; Jun Peng

Signal transducer and activator of transcription 3 (STAT3) plays a critical role in cell survival and proliferation. Constitutive activation of STAT3 is strongly correlated with pathogenesis of various types of malignant tumors including colorectal cancer (CRC), and therefore is a major focus in the development of anti-cancer agents. Pien Tze Huang (PZH), a well-known traditional Chinese formula prescribed already in the Ming Dynasty, has been demonstrated to be clinically effective in the treatment of CRC. However, the precise mechanism of its anti-cancer activity remains largely unknown. In the present study we evaluated the efficacy of PZH against tumor growth in vivo in the CRC mouse xenograft model, and investigated the underlying molecular mechanisms. We found that administration of PZH reduced tumor volume and tumor weight but had no effect on body weight gain in CRC mice, demonstrating that PZH can inhibit colon cancer growth in vivo without apparent adverse effect. We also observed that PZH treatment inhibited the phosphorylation level of STAT3 in tumor tissues. Consequently, the inhibitory effect of PZH on STAT3 activation resulted in the up-regulation of Bax/Bcl-2 ratio as well as down-regulation of Cyclin D1 and CDK4 expression, leading to the induction of apoptosis as well as the inhibition of cell proliferation. These results suggest that promotion of cancer cell apoptosis and inhibition of proliferation via suppression of STAT3 pathway might be one of the mechanisms by which PZH treats colorectal cancer.


Integrative Cancer Therapies | 2014

Scutellaria Barbata D Don Inhibits Colorectal Cancer Growth via Suppression of Multiple Signaling Pathways

Jiumao Lin; Youqin Chen; Qiaoyan Cai; Lihui Wei; Youzhi Zhan; Aling Shen; Thomas J. Sferra; Jun Peng

The pathogenic mechanisms underlying cancer development are complex and heterogeneous, involving multiple cellular signaling transduction pathways that usually function redundantly. In addition, crosstalk between these pathways generates a complicated and robust signaling network that is regulated by compensatory mechanisms. Given the complexity of cancer pathogenesis and progression, many of the currently used antitumor agents, which typically target a single intracellular pathway, might not always be effective on complex tumor systems. Moreover, long-term use of these agents often generates drug resistance and toxicity against normal cells. Therefore, the development of novel anticancer chemotherapies is urgently needed. Scutellaria barbata D Don (SB) is a medicinal herb that has long been used in China to treat various types of cancer. We previously reported that the ethanol extract of SB (EESB) is able to induce colon cancer cell apoptosis, inhibit cell proliferation and tumor angiogenesis via modulation of several pathways, including Hedgehog, Akt, and p53. To further elucidate the precise mechanisms of SB’s antitumor activity, using a colorectal cancer (CRC) mouse xenograft model in the present study, we evaluated the therapeutic efficacy and molecular mechanisms of EESB against tumor growth. We found that EESB reduced tumor volume and tumor weight but had no effect on body weight gain in CRC mice, demonstrating that EESB could inhibit colon cancer growth in vivo without apparent adverse effect. In addition, EESB treatment could significantly suppress the activation of several CRC-related pathways, including STAT3, Erk, and p38 signalings in tumor tissues, and alter the expression of multiple critical target genes such as Bcl-2, Bax, Cyclin D1, CDK4, and p21. These molecular effects lead to the induction of cancer cell apoptosis and inhibition of cell proliferation. Our findings demonstrate that SB possesses a broad range of antitumor activities because of its ability to affect multiple intracellular targets.


Oncology Reports | 2012

Pien Tze Huang suppresses IL-6-inducible STAT3 activation in human colon carcinoma cells through induction of SOCS3

Aling Shen; Youqin Chen; Fei Hong; Jiumao Lin; Lihui Wei; Zhenfeng Hong; Thomas J. Sferra; Jun Peng

IL-6/STAT3 is one of the most critical cellular signal transduction pathways known to malfunction in colorectal cancer (CRC). As a target gene of signal transducer and activator of transcription 3 (STAT3) signaling, suppressor of cytokine signaling 3 (SOCS3) can be quickly induced by interleukin-6 (IL-6) stimulation but it then strongly inhibits IL-6-mediated STAT3 activation, functioning as a negative feedback regulator of the IL-6/STAT3 pathway. Aberrant activation of STAT3 and/or reduced expression of SOCS are strongly correlated with carcinogenesis, which therefore becomes a promising target for the development of novel anticancer chemotherapies. Pien Tze Huang (PZH) is a well-known traditional Chinese formula that was first prescribed by a royal physician 450 years ago in the Ming Dynasty. It has been used in China and Southeast Asia for centuries as a folk remedy for various types of cancer including CRC. However, the precise mechanism of its antitumor activity remains largely unclear. In the present study, we found that PZH could significantly and dose-dependently inhibit IL-6-mediated increase of STAT3 phosphorylation levels and transcriptional activity in the human colon carcinoma HT-29 cells, resulting in the suppression of cell proliferation and the induction of apoptosis. In addition, PZH treatment profoundly inhibited IL-6-induced upregulation of cyclin D1 and Bcl-2, two key target genes of the STAT3 pathway. Moreover, PZH treatment increased the expression of SOCS3. These results suggest that PZH could effectively inhibit proliferation and promote apoptosis of human colon carcinoma cells via modulation of the IL-6/STAT3 signaling pathway and its target genes.


Oncology Reports | 2013

Pien Tze Huang inhibits tumor angiogenesis in a mouse model of colorectal cancer via suppression of multiple cellular pathways

Aling Shen; Jiumao Lin; Youqin Chen; Wei Lin; Liya Liu; Zhenfeng Hong; Thomas J. Sferra; Jun Peng

Angiogenesis plays an essential role in cancer progression, which therefore has become an attractive target for anticancer treatment. Tumor angiogenesis is tightly regulated by multiple signaling pathways that usually function redundantly; in addition, crosstalk between these pathways forms a complicated network that is regulated by compensatory mechanisms. Given the complexity of pathogenic mechanisms underlying tumor angiogenesis, most currently used angiogenesis inhibitors that only target single pathways may be insufficient and probably generate drug resistance, thus, increasing the necessity for development of novel anticancer agents. Traditional Chinese medicines (TCM) are receiving great interest since they have relatively fewer side-effects and have been used for thousands of years to clinically treat various types of diseases including cancer. Pien Tze Huang (PZH), a well-known traditional Chinese formulation that was first prescribed 450 years ago, has long been used as an alternative remedy for cancers. However, the precise mechanism of PZHs anticancer activity remains to be further elucidated. Using a colorectal cancer mouse xenograft model, in the present study, we evaluated the effect of PZH on tumor angiogenesis and investigated the underlying molecular mechanisms. We found that PZH inhibited tumor growth since PZH treatment resulted in decrease in both tumor volume and tumor weight in CRC mice. In addition, PZH suppressed the activation of several signaling pathways such as STAT3, Akt and MAPKs. Consequently, the inhibitory effect of PZH on these pathways resulted in the inhibition of tumor angiogenesis as demonstrated by the decrease of microvessel density in tumor tissues. Moreover, PZH treatment reduced the expression of angiogenic factors including iNOS, eNOS, VEGF-A, bFGF as well as their specific receptors VEGFR2 and bFGFR. Altogether, our findings suggest that inhibition of tumor angiogenesis via suppression of multiple signaling pathways might be one of the mechanisms whereby PZH affects cancers.


International Journal of Oncology | 2015

Pien Tze Huang inhibits metastasis of human colorectal carcinoma cells via modulation of TGF-β1/ZEB/miR‑200 signaling network

Aling Shen; Wei Lin; Youqin Chen; Liya Liu; Hongwei Chen; Qunchuan Zhuang; Jiumao Lin; Thomas J. Sferra; Jun Peng

Tumor metastasis, a complex process involving the spread of malignant tumor cells from a primary tumor site to a distant organ, is a major cause of failure of cancer chemotherapy. Epithelial-mesenchymal transition (EMT) is a critical step for the initiation of cancer metastasis. The processes of EMT and metastasis are highly regulated by a double-negative feedback loop consisting of TGF-β1/ZEB pathway and miR-200 family, which therefore has become a promising target for cancer chemotherapy. Pien Tze Huang (PZH), a well-known traditional Chinese formula first prescribed in the Ming Dynasty, has been demonstrated to be clinically effective in the treatment of various types of human malignancy including colorectal cancer (CRC). Our published data proposed that PZH was able to induce apoptosis, inhibit cell proliferation and tumor angiogenesis, leading to the suppression of CRC growth in vitro and in vivo. To further elucidate the mode of action of PZH, in the present study we evaluated its effects on the metastatic capacities of human colorectal carcinoma HCT-8 cells and investigated the underlying molecular mechanisms. We found that PZH significantly inhibited the migration and invasion of HCT-8 cells in a dose-dependent manner. In addition, PZH treatment inhibited the expression of key mediators of TGF-β1 signaling, such as TGF-β1, Smad2/3 and Smad4. Moreover, PZH treatment suppressed the expression of ZEB1 and ZEB2, two critical target genes of TGF-β1 pathway, leading to a decrease in the expression of mesenchymal marker N-cadherin and an increased expression of epithelial marker E-cadherin. Furthermore, PZH treatment upregulated the expression of miR-200a, miR-200b and miR-200c. Collectively, our findings in this study suggest that PZH can inhibit metastasis of colorectal cancer cells via modulating TGF-β1/ZEB/miR-200 signaling network, which might be one of the mechanisms whereby PZH exerts its anticancer function.


Evidence-based Complementary and Alternative Medicine | 2014

Pien Tze Huang Overcomes Multidrug Resistance and Epithelial-Mesenchymal Transition in Human Colorectal Carcinoma Cells via Suppression of TGF-β Pathway

Aling Shen; Hongwei Chen; Youqin Chen; Jiumao Lin; Wei Lin; Liya Liu; Thomas J. Sferra; Jun Peng

The traditional Chinese medicine formula Pien Tze Huang (PZH) has long been used as a folk remedy for cancer. To elucidate the mode of action of PZH against cancer, in the present study we used a 5-FU resistant human colorectal carcinoma cell line (HCT-8/5-FU) to evaluate the effects of PZH on multidrug resistance (MDR) and epithelial-mesenchymal transition (EMT) as well as the activation of TGF-β pathway. We found that PZH dose-dependently inhibited the viability of HCT-8/5-FU cells which were insensitive to treatment of 5-FU and ADM, demonstrating the ability of PZH to overcome chemoresistance. Furthermore, PZH increased the intercellular accumulation of Rhodamine-123 and downregulated the expression of ABCG2 in HCT-8/5-FU cells. In addition, drug resistance induced the process of EMT in HCT-8 cells as evidenced by EMT-related morphological changes and alteration in the expression of EMT-regulatory factors, which however was neutralized by PZH treatment. Moreover, PZH inhibited MDR/EMT-enhanced migration and invasion capabilities of HCT-8 cells in a dose-dependent manner and suppressed MDR-induced activation of TGF-β signaling in HCT-8/5-FU cells. Taken together, our study suggests that PZH can effectively overcome MDR and inhibit EMT in human colorectal carcinoma cells via suppression of the TGF-β pathway.


Molecular Medicine Reports | 2014

Chloroform fraction of Scutellaria barbata D. Don promotes apoptosis and suppresses proliferation in human colon cancer cells

Ling Zhang; Qiaoyan Cai; Jiumao Lin; Yi Fang; Youzhi Zhan; Aling Shen; Lihui Wei; Lili Wang; Jun Peng

Scutellaria barbata D. Don (SB) has long been used as a major component in numerous Chinese medical formulas to clinically treat various types of cancer. Previously, we reported that the extracts of SB were able to suppress colon cancer growth in vivo and in vitro, possibly by inducing cancer cell apoptosis and inhibiting cell proliferation and tumor angiogenesis. However, the anticancer mechanisms of its bioactive ingredients remain largely unclear. In the present study, using three human colon cancer cell lines SW620, HT-29 and HCT-8, the antitumor effect of different solvent fractions of SB were evaluated and the potential underlying molecular mechanisms were investigated. Using an 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, it was revealed that the chloroform fraction of SB (ECSB) exhibited the most potent inhibitory effect on the growth of all three colon cancer cell lines and SW620 cells exhibited the most sensitive response to ECSB treatment (IC50=65 µg/ml). In addition, by performing fluorescence-activated cell sorting, transmission electron microscopy and colony formation assays, it was observed that ECSB significantly induced apoptosis and inhibited proliferation in SW620 cells in a dose-dependent manner. Furthermore, ECSB treatment resulted in the upregulation of the pro-apoptotic Bax/Bcl-2 ratio and a decrease in the expression of the pro-proliferative cyclin D1 and cyclin-dependent kinase 4. The results from the present study may provide a scientific foundation for the development of novel anticancer agents from the bioactive ingredients in the ECSB.

Collaboration


Dive into the Aling Shen's collaboration.

Top Co-Authors

Avatar

Jun Peng

Fujian University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Jiumao Lin

Fujian University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Youqin Chen

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Sferra

Fujian University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Liya Liu

Fujian University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Lihui Wei

Fujian University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Qiaoyan Cai

Fujian University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhenfeng Hong

Fujian University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Hongwei Chen

Fujian University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Wei Lin

Fujian University of Traditional Chinese Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge