Alireza Fattahi
Sharif University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alireza Fattahi.
Journal of the American Chemical Society | 2012
Alireza Shokri; Azardokht Abedin; Alireza Fattahi; Steven R. Kass
The pK(a) of an acyclic aliphatic heptaol ((HOCH(2)CH(2)CH(OH)CH(2))(3)COH) was measured in DMSO, and its gas-phase acidity is reported as well. This tertiary alcohol was found to be 10(21) times more acidic than tert-butyl alcohol in DMSO and an order of magnitude more acidic than acetic acid (i.e., pK(a) = 11.4 vs 12.3). This can be attributed to a 21.9 kcal mol(-1) stabilization of the charged oxygen center in the conjugate base by three hydrogen bonds and another 6.3 kcal mol(-1) stabilization resulting from an additional three hydrogen bonds between the uncharged primary and secondary hydroxyl groups. Charge delocalization by both the first and second solvation shells may be used to facilitate enzymatic reactions. Acidity constants of a series of polyols were also computed, and the combination of hydrogen-bonding and electron-withdrawing substituents was found to afford acids that are predicted to be extremely acidic in DMSO (i.e., pK(a) < 0). These hydrogen bond enhanced acids represent an attractive class of Brønsted acid catalysts.
Journal of the American Chemical Society | 2009
Zhixin Tian; Alireza Fattahi; Lev Lis; Steven R. Kass
Hydrogen bonds are the dominant motif for organizing the three-dimensional structures of biomolecules such as carbohydrates, nucleic acids, and proteins, and serve as templates for proton transfer reactions. Computations, gas-phase acidity measurements, and pK(a) determinations in dimethyl sulfoxide on a series of polyols indicate that multiple hydrogen bonds to a single charged center lead to greatly enhanced acidities. A new class of Brønsted acids, consequently, is proposed.
Journal of Physical Chemistry A | 2012
Zahra Aliakbar Tehrani; Zahra Jamshidi; Marjan Jebeli Javan; Alireza Fattahi
Understanding the nature of the interaction between metal nanoparticles and biomolecules has been important in the development and design of sensors. In this paper, structural, electronic, and bonding properties of the neutral and anionic forms of glutathione tripeptide (GSH) complexes with a Au(3) cluster were studied using the DFT-B3LYP with 6-31+G**-LANL2DZ mixed basis set. Binding of glutathione with the gold cluster is governed by two different kinds of interactions: Au-X (X = N, O, and S) anchoring bond and Au···H-X nonconventional hydrogen bonding. The influence of the intramolecular hydrogen bonding of glutathione on the interaction of this peptide with the gold cluster has been investigated. To gain insight on the role of intramolecular hydrogen bonding on Au-GSH interaction, we compared interaction energies of Au-GSH complexes with those of cystein and glycine components. Our results demonstrated that, in spite of the ability of cystein to form highly stable metal-sulfide interaction, complexation behavior of glutathione is governed by its intramolecular backbone hydrogen bonding. The quantum theory of atom in molecule (QTAIM) and natural bond orbital analysis (NBO) have also been applied to interpret the nature of interactions in Au-GSH complexes. Finally, conformational flexibility of glutathione during complexation with the Au(3) cluster was investigated by means of monitoring Ramachandran angles.
Journal of Physical Chemistry A | 2012
Mehdi Shakourian-Fard; Alireza Fattahi; Ahmad Bayat
The interactions between five amino acid based anions ([AA](-) (AA = Gly, Phe, His, Try, and Tyr)) and N7,N9-dimethylguaninium cation ([dMG](+)) have been investigated by the hybrid density functional theory method B3LYP together with the basis set 6-311++G(d,p). The calculated interaction energy was found to decrease in magnitude with increasing side-chain length in the amino acid anion. The interaction between the [dMG](+) cation and [AA](-) anion in the most stable configurations of ion pairs is a hydrogen bonding interaction. These hydrogen bonds (H bonds) were analyzed by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis. Finally, several correlations between electron densities in bond critical points of hydrogen bonds and interaction energy as well as vibrational frequencies in the most stable configurations of ion pairs have been checked.
Journal of Physical Chemistry A | 2013
Alireza Shokri; Marzieh Ramezani; Alireza Fattahi; Steven R. Kass
Like-charge ion pairing is commonly observed in protein structures and plays a significant role in biochemical processes. Density functional calculations combined with the conductor-like polarizable continuum model were employed to study the formation possibilities of doubly charged noncovalently linked complexes of a series of model compounds and amino acids in the gas phase and in solution. Hydrogen bond interactions were found to offset the Coulombic repulsion such that cation-cation clusters are minima on the potential energy surfaces and neither counterions nor solvent molecules are needed to hold them together. In the gas phase the dissociation energies are exothermic, and the separation barriers span from 1.7 to 15.6 kcal mol(-1). Liquid-phase computations indicate that the separation enthalpies of the cation-cation complexes become endothermic in water and nonpolar solvents with dielectric constants of ≥7 (i.e., the value for THF). These results reveal that electrostatically defying noncovalent complexes of like-charged ions can overcome their Coulombic repulsion even in low-polarity environments.
Structural Chemistry | 2012
Mehdi Shakourian-Fard; Alireza Fattahi
Hydrogen bonding interactions between thymine nucleobase and 2′-deoxythymidine nucleoside (dT) with some biological anions such as F− (fluoride), Cl− (chloride), OH− (hydroxide), and NO3− (nitrate) have been explored theoretically. In this study, complexes have been studied by density functional theory (B3LYP method and 6-311++G (d,p) basis set). The relevant geometries, energies, and characteristics of hydrogen bonds (H-bonds) have been systematically investigated. There is a correlation between interaction energy and proton affinity for complexes of thymine nucleobase. The nature of all the interactions has been analyzed by means of the natural bonding orbital (NBO) and quantum theory atoms in molecules (QTAIM) approaches. Donors, acceptors, and orbital interaction energies were also calculated for the hydrogen bonds. Excellent correlations between structural parameter (δR) and electron density topological parameter (ρb) as well as between E(2) and ρb have been found. It is interesting that hydrogen bonds with anions can affect the geometry of thymine and 2′-deoxythymidine molecules. For example, these interactions can change the bond lengths in thymine nucleobase, the orientation of base unit with respect to sugar ring, the furanose ring puckering, and the C1′–N1 glycosidic linkage in dT nucleoside. Thus, it is necessary to obtain a fundamental understanding of chemical behavior of nucleobases and nucleosides in presence of anions.
Journal of Theoretical and Computational Chemistry | 2012
Zahra Aliakbar Tehrani; Marjan Jebeli Javan; Alireza Fattahi; Mohammad Mahmoodi Hashemi
The radical cations of DNA constituents generated by the ionizing radiation initiate an alteration of the bases, which is one of the main types of cytotoxic DNA lesions. These cation radical spices are known for their role in producing nucleic acid strand break. In this study, the gas-phase intrinsic chemical properties of the gaseous radical cations of cytosine and its base pair with guanine were examined by employing density functional theory (B3LYP) with the 6-311++G(d,p) basis set. Structures, geometries, adiabatic ionization energies, adiabatic electron affinities, charge distributions, molecular orbital analysis and proton-transfer process of these molecules were investigated. The influence of cation radical formation on acidities of multiple sites in cytosine molecule was investigated. Results of calculations revealed that cytosine radicals formed by deprotonation of cytosine cation radicals can exothermically abstract hydrogen atoms from thiol groups, phenol, and α-positions of amino acid. Furthermore, comparison of acidity value of N–H sites of cytosine cation radical with the known proton affinities (PA) of organic and biological molecules implied that cytosine cation radical can exothermically transfer onto basic sites of amino acids and peptides.
Structural Chemistry | 2013
Hedieh Torabifard; Alireza Fattahi
Thiotepa (N,N′,N″-triethylenethiophosphoramide) and its major metabolite (Tepa) as trifunctional alkylating agents has recently been used in cancer therapy. In vivo and vitro studies show the possible pathways of alkylation of DNA by Thiotepa and Tepa. Two pathways are suggested, but the main pathway of mechanism remains unclear. In pathway 1, forming cross-links with DNA molecules can be carried out via two different mechanisms. In first mechanism, these agents undergo the ring opening reaction which is initiated by protonating aziridine, which then becomes the main target of nucleophilic attack by the N7-Guanine of DNA. The second probable mechanism is ring opening of aziridyl group by nucleophilic attack of N7-Guanine without initial protonation. Thiotepa and Tepa in pathway 2, act as a cell penetrating carrier for aziridine, which is released via hydrolysis. The released aziridine can form a cross-link with N7-Guanine. In this study, we calculated the activation free energy and kinetic rate constant for alkylating the Guanine via the first pathway to determine the most precise mechanism by applying density functional theory using B3LYP method. We carried out geometrical optimizations with the conductor-like polarizable continuum model to account for the solvent effect, and the results were compared with those in the gas phase. Hyperconjugation stabilization factors that affect on stability of generated transition state were investigated by natural bond order analysis. Furthermore, quantum theory of atoms in molecules analysis was performed to extract the bond critical points properties because the electron densities can be considered as a good description of the strength of different types of interactions.
Phosphorus Sulfur and Silicon and The Related Elements | 2014
Majid Vafaeezadeh; Alireza Fattahi
Abstract Density functional theory (DFT) was used to investigate the acidity of the various silica alkyl sulfonic acids. In this regard, cluster models with various alkyl spacer lengths were selected to mimic the surface of silica gel. The effects of distance from the surface and the role of hydrogen bond (H–bond) on the ΔHacidity values of these catalysts were investigated. DFT calculations revealed that a notable gap of ΔHacidity values exists between the structures considering lateral hydrogen bonding with the surface of the silica HB structure and the structures with omitted surface interactions (non-HB structures). Natural bonding orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses were carried out to obtain detailed information about the nature of the H–bonds. GRAPHICAL ABSTRACT
Structural Chemistry | 2012
Maryam S. Ahmadi; Mehdi Shakourian-Fard; Alireza Fattahi
The B3LYP/6-311++G (d,p) density functional approach was used to study the gas-phase metal affinities of Guanosine (ribonucleoside) for the Li+, Na+, K+, Mg2+, Ca2+, Zn2+, and Cu+ cations. In this study we determine coordination geometries, binding strength, absolute metal ion affinities, and free energies for the most stable products. We have also compared the results for Guanosine, with our previously reported results for 2′-Deoxyguanosine. Based on the results, it is obvious that MIA is strongly dependent on the charge-to-size ratio of the cation. Guanosine interacts more strongly with Zn2+ than do with Mg2+, Ca2+, and Cu+ and therefore stronger interactions lead to higher MIA. In both free molecules and their complexes, the Syn orientation of the base is stabilized by an intramolecular O5′–H···N3 hydrogen bond and the anti orientation of the base is stabilized by an intramolecular C–H···O hydrogen bond formed between the (C8-H8) and the O5′ atom of the sugar moiety. It is also interesting to mention that linear correlation between calculated MIA values and the atomic numbers (Z) of the metal ions of Li+, Na+, and K+ were found. Furthermore, the influences of metal cationization on the strength of the N-glycosidic bond, torsion angles, angle of pseudorotation (P), and intramolecular C–H···O and O–H···O hydrogen bonds have been studied. Natural bond orbital (NBO) analysis was performed to calculate the charge transfer and natural population analysis of the complexes. Quantum theory of atoms in molecules (QTAIM) was also applied to determine the nature of interactions.