Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alireza Fazeli is active.

Publication


Featured researches published by Alireza Fazeli.


Biology of Reproduction | 2004

Sperm-Induced Modification of the Oviductal Gene Expression Profile After Natural Insemination in Mice

Alireza Fazeli; Nabeel A. Affara; Michael Hubank; William V. Holt

Abstract In mammals, the physiological interaction between spermatozoa and oviductal epithelia involves intimate and specific contact between the two cell types. Spermatozoa may undergo stringent selection processes within the female reproductive tract before they meet and fertilize oocytes. The physiological basis of the sperm selection process is largely unknown. Here we tested the hypothesis that the oviduct has a recognition system for spermatozoa that can detect the arrival of spermatozoa in the oviduct after insemination, resulting in alterations of the oviductal transcriptome. We initially performed a global screening of the oviductal transcriptome in mice 1) at the time of estrus (mating) and 2) 6 h after mating. Transcriptional alterations in the oviduct after mating were attributed to the presence of spermatozoa in the oviduct after mating and also to changes in the hormonal environment as female mice underwent the transition from estrus to diestrus. To distinguish these possibilities, female mice were then mated with T145H mutant mice, which because of spermatogenic arrest, produce seminal plasma but no spermatozoa. Focusing on two molecules that in the first experiment were upregulated after mating, it was found that adrenomedullin and prostaglandin endoperoxidase synthase 2 transcripts were upregulated in the oviducts of mice only after mating with fertile males; those mated with T145H infertile males showed significantly less response. These results indicate that it is the arrival of spermatozoa in the oviduct that activates one or more signal transduction pathways and leads to changes in the oviductal transcriptome profiles.


Molecular & Cellular Proteomics | 2005

Gametes Alter the Oviductal Secretory Proteome

A. Stephen Georgiou; Edita Sostaric; Chi H. Wong; Ambrosius P. Snijders; Phillip C. Wright; Harry Moore; Alireza Fazeli

The mammalian oviduct provides an optimal environment for the maturation of gametes, fertilization, and early embryonic development. Secretory cells lining the lumen of the mammalian oviduct synthesize and secrete proteins that have been shown to interact with and influence the activities of gametes and embryos. We hypothesized that the presence of gametes in the oviduct alters the oviductal secretory proteomic profile. We used a combination of two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry to identify oviductal protein secretions that were altered in response to the presence of gametes in the oviduct. The oviductal response to spermatozoa was different from its response to oocytes as verified by Western blotting. The presence of spermatozoa or oocytes in the oviduct altered the secretion of specific proteins. Most of these proteins are known to have an influence on gamete maturation, viability, and function, and there is evidence to suggest these proteins may prepare the oviductal environment for arrival of the zygote. Our findings suggest the presence of a gamete recognition system within the oviduct capable of distinguishing between spermatozoa and oocytes.


Human Reproduction | 2009

In vitro post-meiotic germ cell development from human embryonic stem cells

Behrouz Aflatoonian; L. Ruban; M. Jones; Reza Aflatoonian; Alireza Fazeli; Harry Moore

BACKGROUND Investigating the mechanisms of human primordial germ cell (PGC) and gamete development are important for understanding the causes of infertility and effects of environmental chemicals on reproductive development. However, there are practical and ethical difficulties associated with obtaining human tissue in early development. The aim of this study was to investigate whether human embryonic stem cell-hESC-generated germ cells could provide an in vitro model of gamete development. METHOD Human ESCs were differentiated as embryoid bodies (EBs) in vitro. Gene and protein marker expression profiles of EBs in different periods of culture were analysed by quantitative polymerase chain reaction (Q-PCR) and immunolocalization to monitor germ cell development. Secretion of hormones involved in germ cell maturation was measured, to detect the existence of a germ cell niche within EBs. RESULTS Q-PCR revealed gene expression profiles consistent with PGC formation and germ cell development. A small population of post-meiotic spermatid cells were identified using sperm-specific antibodies (Protamine 1 and 1.97). Although gene expression profiles characteristic of oocyte development and follicle-like structures were detected, a committed oocyte with extra-cellular zona pellucida was not recognized with zona pellucida-specific monoclonal antibody. CONCLUSIONS hESCs can form PGCs and post-meiotic spermatids in vitro, however, there remains doubt about oocyte development. Levels of steroid hormones produced by EBs were significant when compared with known values for a similar quantity of human testis, suggesting that hESC may intrinsically create a favourable hormonal niche for spermatogenesis.


BMC Genomics | 2014

The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa

C. Almiñana; Ignacio Caballero; Paul R. Heath; Saeedeh Maleki-Dizaji; I. Parrilla; C. Cuello; M.A. Gil; Jl Vazquez; J.M. Vazquez; Jordi Roca; Emilio A. Martinez; William V. Holt; Alireza Fazeli

BackgroundSex allocation of offspring in mammals is usually considered as a matter of chance, being dependent on whether an X- or a Y-chromosome-bearing spermatozoon reaches the oocyte first. Here we investigated the alternative possibility, namely that the oviducts can recognise X- and Y- spermatozoa, and may thus be able to bias the offspring sex ratio.ResultsBy introducing X- or Y-sperm populations into the two separate oviducts of single female pigs using bilateral laparoscopic insemination we found that the spermatozoa did indeed elicit sex-specific transcriptomic responses. Microarray analysis revealed that 501 were consistently altered (P-value < 0.05) in the oviduct in the presence of Y-chromosome-bearing spermatozoa compared to the presence of X-chromosome-bearing spermatozoa. From these 501 transcripts, 271 transcripts (54.1%) were down-regulated and 230 transcripts (45.9%) were up-regulated when the Y- chromosome-bearing spermatozoa was present in the oviduct. Our data showed that local immune responses specific to each sperm type were elicited within the oviduct. In addition, either type of spermatozoa elicits sex-specific signal transduction signalling by oviductal cells.ConclusionsOur data suggest that the oviduct functions as a biological sensor that screens the spermatozoon, and then responds by modifying the oviductal environment. We hypothesize that there might exist a gender biasing mechanism controlled by the female.


Reproduction | 2009

Effects of HSPA8, an evolutionarily conserved oviductal protein, on boar and bull spermatozoa

R. M. A. Elliott; Rhiannon E. Lloyd; Alireza Fazeli; Edita Sostaric; A. S. Georgiou; N. Satake; P.F. Watson; William V. Holt

Previous studies have shown that a soluble protein fraction derived from preparations of apical plasma membrane (APM) of the oviductal epithelium enhances the in vitro survival of mammalian spermatozoa. Here, we show that the survival enhancing property of the soluble protein fraction seems to depend significantly upon heat shock 70 kDa protein 8 (HSPA8 previously known as HSPA10). The following findings in the present study enabled us to draw this conclusion: first, using proteomic analysis, we identified a subset of 70 kDa oviductal surface proteins that bound to spermatozoa, one of which was HSPA8. Second, pre-treatment of the soluble protein fraction with anti-HSPA8 antibody reduced the 24 h (at 39 degrees C) sperm survival enhancement effect normally induced by the presence of 200 microg/ml soluble APM proteins. Third, complementary experiments showed that substituting the soluble protein fraction with bovine recombinant HSPA8 (0.5-2 microg/ml) also elicited the sperm survival effect. Finally, we also tested the effect of bovine recombinant HSPA8 on bull spermatozoa and found similar, dose-responsive, sperm survival promoting effects. The conserved nature of HSPA8 between mammalian species suggests that this protein may represent a common biological mechanism for the maintenance of sperm survival in the oviduct.


Reproduction, Fertility and Development | 2009

Effects of oviductal proteins, including heat shock 70 kDa protein 8, on survival of ram spermatozoa over 48 h in vitro.

Rhiannon E. Lloyd; R. M. A. Elliott; Alireza Fazeli; P.F. Watson; William V. Holt

Following insemination, ram spermatozoa are transported to the isthmus region of the oviduct where they bind to the oviductal epithelial cells (OEC), remaining viable for several hours. The aim of the present study was to begin to decipher which component(s) of the ewe oviduct actively participates in maintaining the viability of ram spermatozoa. A series of experiments was conducted to investigate whether: (1) soluble OEC apical plasma membrane proteins (sAPM) isolated from ewes prolong survival of ram spermatozoa over an extended (48 h) coincubation period at 39 degrees C; (2) a recombinant form of one of these oviductal proteins, namely heat shock 70 kDa protein 8 (HSPA8), prolongs survival of ram spermatozoa; and (3) pretreatment with HSPA8 antibody compromises the ability of sAPM to prolong the survival of ram spermatozoa. Both sAPM and recombinant HSPA8 had a beneficial effect on the viability of ram spermatozoa during coincubation, although both these effects were dose dependent. In contrast, pretreatment with HSPA8 antibody significantly negated the ability of sAPM to maintain the viability of ram spermatozoa. These findings suggest that HSPA8 is an active component of the ewe oviduct that participates in maintaining the viability of ram spermatozoa. This is a potentially valuable observation given that there is a great deal of room for improving existing diluents for storing fresh ram semen.


Journal of Proteome Research | 2008

Oviductal Cell Proteome Alterations during the Reproductive Cycle in Pigs

Seytanoglu A; Georgiou As; Edita Sostaric; Paul F. Watson; William V. Holt; Alireza Fazeli

The mammalian oviduct plays a crucial role in events leading to the establishment of pregnancy. During the reproductive cycle, the reproductive system undergoes various changes, including alterations in the number of different cell types in the oviductal epithelium and changes in the height of oviductal cells. Maintaining the unique oviductal environment required for the fertilization and early embryonic development comes with an energy cost to the organism. Therefore, it is hypothesized that structural and functional changes to the oviduct during the reproductive cycle represent vital preparations for the development of suitable environments for conception and embryo support. Here, we aimed to identify the changes in protein expression profile that occur during the follicular and luteal stages of the reproductive cycle in oviductal epithelial cells. The porcine oviductal epithelial cell proteomes from the follicular and luteal stages of the reproductive cycle were contrasted after separation by 2-D gel electrophoresis. Several oviductal epithelial cell proteins were up- or down-regulated during the reproductive cycle. We checked the quantitative changes of two of these molecules during different stages of the reproductive cycle using Western blot analysis. Finally, a number of these proteins were identified using tandem mass spectrometry. The results demonstrated distinctive differences in the proteomic profiles of the oviduct between follicular and luteal phases of the reproductive cycle.


Reproduction | 2014

Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity.

Najmeh Moein-Vaziri; Ian Phillips; Simon Smith; Carmen Almiňana; Carolina Maside; M.A. Gil; Jordi Roca; Emilio A. Martinez; William V. Holt; A. Graham Pockley; Alireza Fazeli

The constitutive 70  kDa heat-shock protein, HSPA8, has previously been shown to contribute to the long-term survival of spermatozoa inside the mammalian female reproductive tract. Here, we show that a recombinant form of HSPA8 rapidly promotes the viability of uncapacitated spermatozoa, the ability of spermatozoa to bind to oviductal epithelial cells, enhances IVF performance, and decreases sperm mitochondrial activity. Fluorescence recovery after photobleaching revealed that the repair of membrane damage is achieved by an almost instantaneous increase in sperm membrane fluidity. The ability of HSPA8 to influence membrane stability and fluidity, as well as its conserved nature among mammalian species, supports the idea that this protein protects sperm survival through membrane repair mechanisms. Free Persian abstract A Persian translation of the abstract is freely available online at http://www.reproduction-online.org/content/147/5/719/suppl/DC1.


Reproduction, Fertility and Development | 2012

The oviducal protein, heat-shock 70-kDa protein 8, improves the long-term survival of ram spermatozoa during storage at 17°C in a commercial extender

Rhiannon E. Lloyd; Alireza Fazeli; P.F. Watson; William V. Holt

Poor fertility rates are often observed when fresh ram semen stored in conventional extenders is used for cervical artificial insemination (AI). Heat-shock 70-kDa protein 8 (HSPA8), found within the oviduct, prolongs boar, ram and bull sperm survival at body temperatures in vitro. Here, we aimed to determine whether supplementing extenders (INRA-96 and RSD-1) with HSPA8 (4 µg mL⁻¹) would improve their performance in maintaining freshly collected ram sperm viability and sperm nuclear DNA integrity during storage over 48 h at 17°C. Sperm function was assessed at 1, 6, 24 and 48h and this experiment was repeated using 25 × 10⁶ and 800 × 10⁶ spermatozoa mL⁻¹. INRA96 supplemented with HSPA8 maintained sperm viability significantly better than INRA96 alone at both sperm concentrations. However, sperm nuclear DNA fragmentation (DF) increased significantly during storage using the higher sperm concentration, irrespective of the extender and the protein treatment used. Increasing levels of sperm nuclear DF over time could explain why poor fertility rates are often observed following cervical AI using stored ram semen. However, further research is required to ascertain whether supplementing the commercially available INRA96 extender with HSPA8 will improve fertility rates following cervical AI using stored ram semen.


BMC Genomics | 2014

Relationship between genome and epigenome--challenges and requirements for future research.

Geneviève Almouzni; Lucia Altucci; Bruno Amati; Neil Ashley; David C. Baulcombe; Nathalie Beaujean; Christoph Bock; Erik Bongcam-Rudloff; Jean Bousquet; Sigurd Braun; Brigitte Bressac-de Paillerets; M.J.G. Bussemakers; Laura Clarke; Ana Conesa; Xavier Estivill; Alireza Fazeli; Neza Grgurevic; Ivo Gut; Bastiaan T. Heijmans; Sylvie Hermouet; Jeanine J. Houwing-Duistermaat; Ilaria Iacobucci; Janez Ilaš; Raju Kandimalla; Susanne Krauss-Etschmann; Paul Lasko; Soeren Lehmann; Anders M. Lindroth; Gregor Majdic; Eric Marcotte

Understanding the links between genetic, epigenetic and non-genetic factors throughout the lifespan and across generations and their role in disease susceptibility and disease progression offer entirely new avenues and solutions to major problems in our society. To overcome the numerous challenges, we have come up with nine major conclusions to set the vision for future policies and research agendas at the European level.

Collaboration


Dive into the Alireza Fazeli's collaboration.

Top Co-Authors

Avatar

William V. Holt

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar

P.F. Watson

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar

William V. Holt

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Satake

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge