Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alisa E. Koch is active.

Publication


Featured researches published by Alisa E. Koch.


Journal of Clinical Investigation | 1998

The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions.

Shixin Qin; James B. Rottman; P Myers; Nasim Kassam; Michael E. Weinblatt; Marcel Loetscher; Alisa E. Koch; Bernhard Moser; Charles R. Mackay

T cells infiltrating inflammatory sites are usually of the activated/memory type. The precise mechanism for the positioning of these cells within tissues is unclear. Adhesion molecules certainly play a role; however, the intricate control of cell migration appears to be mediated by numerous chemokines and their receptors. Particularly important chemokines for activated/memory T cells are the CXCR3 ligands IP-10 and Mig and the CCR5 ligands RANTES, macrophage inflammatory protein-1alpha, and macrophage inflammatory protein-1beta. We raised anti-CXCR3 mAbs and were able to detect high levels of CXCR3 expression on activated T cells. Surprisingly, a proportion of circulating blood T cells, B cells, and natural killer cells also expressed CXCR3. CCR5 showed a similar expression pattern as CXCR3, but was expressed on fewer circulating T cells. Blood T cells expressing CXCR3 (and CCR5) were mostly CD45RO+, and generally expressed high levels of beta1 integrins. This phenotype resembled that of T cells infiltrating inflammatory lesions. Immunostaining of T cells in rheumatoid arthritis synovial fluid confirmed that virtually all such T cells expressed CXCR3 and approximately 80% expressed CCR5, representing high enrichment over levels of CXCR3+ and CCR5+ T cells in blood, 35 and 15%, respectively. Analysis by immunohistochemistry of various inflamed tissues gave comparable findings in that virtually all T cells within the lesions expressed CXCR3, particularly in perivascular regions, whereas far fewer T cells within normal lymph nodes expressed CXCR3 or CCR5. These results demonstrate that the chemokine receptor CXCR3 and CCR5 are markers for T cells associated with certain inflammatory reactions, particularly TH-1 type reactions. Moreover, CXCR3 and CCR5 appear to identify subsets of T cells in blood with a predilection for homing to these sites.


Journal of Clinical Investigation | 1992

Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis.

Alisa E. Koch; Steven L. Kunkel; Lisa A. Harlow; Bruce A. Johnson; Holly L. Evanoff; George K. Haines; Marie D. Burdick; R M Pope; Robert M. Strieter

Cells within the synovial tissue may recruit mononuclear phagocytes into the synovial fluid and tissues of arthritic patients. We investigated the production of the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1) using sera, synovial fluid, synovial tissue, as well as macrophages and fibroblasts isolated from synovial tissues from 80 arthritic patients. MCP-1 levels were significantly higher (P less than 0.05) in synovial fluid from RA patients (mean 25.5 +/- 8.1 ng/ml [SE]) compared to synovial fluid from osteoarthritis (OA) patients (0.92 +/- 0.08), or from patients with other arthritides (2.9 +/- 1.5). MCP-1 levels in RA sera (8.44 +/- 2.33) were significantly greater than MCP-1 in normal sera (0.16 +/- 0.06). The quantities of RA synovial fluid IL-8, which is chemotactic for neutrophils and lymphocytes, and MCP-1 were strongly positively correlated (P less than 0.05). To examine the cellular source of MCP-1, RA synovial tissue macrophages and fibroblasts were isolated. Synovial tissue fibroblasts did not express MCP-1 mRNA, but could be induced to produce MCP-1 by stimulation with either IL-1 beta, tumor necrosis factor-alpha (TNF-alpha), or LPS. In contrast, unlike normal peripheral blood monocytes or alveolar macrophages, RA synovial tissue macrophages constitutively expressed MCP-1 mRNA and antigen. Immunohistochemical analysis of synovial tissue showed that a significantly greater percentage of RA macrophages (50 +/- 8%) as compared to either OA macrophages (5 +/- 2) or normal macrophages (1 +/- 0.3) reacted with anti-MCP-1 antibodies. In addition, the synovial lining layer reacted with MCP-1 in both RA and OA synovial tissues. In contrast, only a minority of synovial fibroblasts (18 +/- 8%) from RA synovium were positive for immunolocalization of MCP-1. These results suggest that synovial production of MCP-1 may play an important role in the recruitment of mononuclear phagocytes during inflammation associated with RA and that synovial tissue macrophages are the dominant source of this cytokine.


Journal of Clinical Investigation | 1994

Macrophage inflammatory protein-1 alpha. A novel chemotactic cytokine for macrophages in rheumatoid arthritis.

Alisa E. Koch; Steven L. Kunkel; Lisa A. Harlow; D D Mazarakis; George K. Haines; Marie D. Burdick; R M Pope; Robert M. Strieter

We have shown that human macrophages (m phi s) play an important role in the elaboration of chemotactic cytokines in rheumatoid arthritis (RA) (Koch, A. E., S. L. Kunkel, J. C. Burrows, H. L. Evanoff, G. K. Haines, R. M. Pope, and R. M. Strieter. 1991. J. Immunol. 147:2187; Koch, A. E., S. L. Kunkel, L. A. Harlow, B. Johnson, H. L. Evanoff, G. K. Haines, M. D. Burdick, R. M. Pope, and R. M. Strieter. 1992. J. Clin. Invest. 90:772; Koch, A. E., P. J. Polverini, S. L. Kunkel, L. A. Harlow, L. A. DiPietro, V. M. Elner, S. G. Elner, and R. M. Strieter. 1992. Science (Wash. DC). 258:1798). Recently, m phi inflammatory protein-1 (MIP-1 alpha), a cytokine with chemotactic activity for m phi s and neutrophils (PMNs), has been described. We have examined the production of MIP-1 alpha using sera, synovial fluid (SF), and synovial tissue (ST) from 63 arthritic patients. MIP-1 alpha was higher in RA SF (mean, 29 +/- 8 ng/ml [SE]) compared with other forms of arthritis (2.8 +/- 1.7), or osteoarthritis (0.7 +/- 0.4; P < 0.05). RA SF MIP-1 alpha was greater than that found in either RA or normal peripheral blood (PB) (P < 0.05). Anti-MIP-1 alpha neutralized 36 +/- 3% (mean +/- SE) of the chemotactic activity for m phi s, but not PMNs, found in RA SFs. RA SF and PB mononuclear cells produced antigenic MIP-1 alpha. Mononuclear cell MIP-1 alpha production was augmented with phytohemagglutinin or LPS. Isolated RA ST fibroblast production of antigenic MIP-1 alpha was augmented upon incubation of cells with LPS, and to a lesser extent with tumor necrosis factor-alpha. Isolated RA ST m phi s expressed constitutive MIP-1 alpha mRNA and antigenic MIP-1 alpha. Using ST immunohistochemistry, MIP-1 alpha+ cells from RA compared with normal were predominantly m phi s and lining cells (P < 0.05). These results suggest that MIP-1 alpha plays a role in the selective recruitment of m phi s in synovial inflammation associated with RA.


Arthritis & Rheumatism | 2001

Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis

Kenneth J. Katschke; James B. Rottman; Jeffrey H. Ruth; Shixin Qin; Lijun Wu; Gregory J. LaRosa; Paul D. Ponath; Christy C. Park; Richard M. Pope; Alisa E. Koch

OBJECTIVE Since it is likely that monocytes utilize chemokines to migrate to the rheumatoid arthritis (RA) joint, we investigated the expression of C-C chemokine receptors (CCR) 1-6 and C-X-C receptor 3 (CXCR3) in the peripheral blood (PB), synovial fluid (SF), and synovial tissue of patients with RA as well as in the PB of normal subjects. METHODS We compared chemokine receptor expression on CD14+ monocytes from normal PB, RA PB, and RA SF using 2-color flow cytometry. Correlations with patient clinical data were determined. Chemokine and receptor expression were investigated in RA synovial tissue by immunohistochemistry and 2-color immunofluorescence to identify CD68+ macrophages. RESULTS Most normal PB monocytes expressed CCR1 (87%) and CCR2 (84%), but not CCRs 3, 4, 5, or 6 or CXCR3. RA PB monocytes expressed CCR1 (56%) and CCR2 (76%), with significantly more expressing CCR3 (18%), CCR4 (38%), and CCR5 (17%) compared with normal PB monocytes. Significantly fewer SF monocytes from RA patients expressed CCR1 (17%), CCR2 (24%), and CCR4 (6%) while significantly more expressed CCR3 (35%) and CCR5 (47%) compared with RA and normal PB monocytes; CCR6 and CXCR3 were rarely detected. Clinically, the erythrocyte sedimentation rate was inversely correlated with the expression of CCR1 and CCR4 by RA PB, and CCR5 expression by RA SF was correlated with the SF white blood cell count. CCR1-, CCR2-, and CCR5-immunoreactive cells were found in RA synovial tissue and colocalized with CD68+ macrophages. RA synovial tissue RANTES (regulated upon activation, normally T cell expressed and secreted chemokine)- and monocyte chemoattractant protein 1-immunoreactive cells colocalized with CCR1 and CCR2, respectively, on serial sections. Macrophage inflammatory protein 1alpha (MIP-1alpha) was principally restricted to vascular endothelium, and MIP-1beta+ macrophages were found throughout the sections. CONCLUSION Monocytes mainly express CCR1 and CCR2 in normal and RA PB, CCR3 and CCR5 in RA PB and RA SF, and CCR4 in RA PB. The differential expression of chemokine receptors suggests that certain receptors aid in monocyte recruitment from the circulation while others are important in monocyte retention in the joint.


Current Opinion in Rheumatology | 2007

Macrophages and their products in rheumatoid arthritis

Zoltán Szekanecz; Alisa E. Koch

Purpose of reviewMacrophages differentiate from peripheral-blood monocytes. Both monocytes and synovial macrophages are key players in rheumatoid arthritis. These cells are involved in the initiation and perpetuation of inflammation, leukocyte adhesion and migration, matrix degradation and angiogenesis. Macrophages express adhesion molecules, chemokine receptors and other surface antigens. They also secrete a number of chemokines, cytokines, growth factors, proteases and other mediators. Recent findingsMacrophage migration-inhibitory factor has drawn significant attention recently. This cytokine is involved in macrophage activation and cytokine production. Migration-inhibitory factor also regulates glucocorticoid sensitivity and may be a pathogenic link between rheumatoid arthritis and atherosclerosis. Novel macrophage-derived chemokines and chemokine receptors have been identified. Interleukin-10 may have several proinflammatory effects that may influence its action in rheumatoid arthritis. Several proteinases including cathepsin G are produced by macrophages during rheumatoid arthritis-associated inflammatory and angiogenic events. Antirheumatic drugs, imatinib, chemokine receptor inhibitors and other specific strategies may become included in the therapy of rheumatoid arthritis. SummaryMacrophages and their products are key players in the pathogenesis of rheumatoid arthritis and may be good therapeutic targets.


Journal of Immunology | 2001

Evidence of IL-18 as a Novel Angiogenic Mediator

Christy C. Park; Jacques Morel; M. A. Amin; Matthew A. Connors; Lisa A. Harlow; Alisa E. Koch

Angiogenesis, or new blood vessel growth, is a key process in the development of synovial inflammation in rheumatoid arthritis (RA). Integral to this pathologic proliferation are proinflammatory cytokines. We hypothesized a role for IL-18 as an angiogenic mediator in RA. We examined the effect of human IL-18 on human microvascular endothelial cell (HMVEC) migration. IL-18 induced HMVEC migration at 1 nM (p < 0.05). RA synovial fluids potently induced endothelial cell migration, but IL-18 immunodepletion resulted in a 68 ± 5% decrease in HMVEC migration (p < 0.05). IL-18 appears to act on HMVECs via αvβ3 integrin. To test whether IL-18 induced endothelial cell tube formation in vitro, we quantitated the degree of tube formation on Matrigel matrix. IL-18, 1 or 10 nM, resulted in a 77% or 87% increase in tube formation compared with control (p < 0.05). To determine whether IL-18 may be angiogenic in vivo, we implanted IL-18 in Matrigel plugs in mice, and IL-18 at 1 and 10 nM induced angiogenesis (p < 0.05). The angiogenesis observed appears to be independent of the contribution of local TNF-α, as evidenced by adding neutralizing anti-TNF-α Ab to the Matrigel plugs. In an alternative in vivo model, sponges embedded with IL-18 or control were implanted into mice. IL-18 (10 nM) induced a 4-fold increase in angiogenesis vs the control (p < 0.05). These findings support a novel function for IL-18 as an angiogenic factor in RA and may elucidate a potential therapeutic target for angiogenesis-directed diseases.


Arthritis & Rheumatism | 2001

Fractalkine, a novel chemokine in rheumatoid arthritis and in rat adjuvant‐induced arthritis

Jeffrey H. Ruth; Michael V. Volin; G. Kenneth Haines; Drew C. Woodruff; Kenneth J. Katschke; James M. Woods; Christy C. Park; Jacques Morel; Alisa E. Koch

OBJECTIVE To examine the expression of the novel CX3C chemokine fractalkine (Fkn) and its receptor (CX3CR1) in rheumatoid arthritis (RA) and rat adjuvant-induced arthritis (AIA), a model of RA. METHODS Immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assay (ELISA), reverse transcriptase-polymerase chain reaction (RT-PCR), and chemotaxis assays were used. RESULTS In rat AIA, synovial tissue (ST) macrophages, fibroblasts, endothelial cells, and dendritic cells were Fkn immunopositive, whereas lymphocytes did not significantly express Fkn. Significant staining for CX3CR1 was found in ST macrophages, fibroblasts, and dendritic cells, whereas only a small percentage of endothelial cells stained for CX3CR1 in rat AIA. We immunolocalized Fkn to RA ST macrophages, fibroblasts, endothelial cells, and dendritic cells. We also found intense ST macrophage and dendritic cell staining for CX3CR1 in RA ST. Flow cytometry analysis of RA synovial fluid (SF) and peripheral blood revealed a greater percentage of monocytes expressing Fkn and CX3CR1 compared with T cells. By ELISA, we found significantly elevated soluble Fkn (sFkn) levels in RA SF compared with SF from patients with osteoarthritis or other forms of arthritis. By RT-PCR, we found enhanced expression of Fkn and CX3CR1 mRNA on day 18 in rat AIA, a time of pronounced inflammation in the rat joint. Soluble Fkn-depleted RA SF showed significantly decreased chemotactic activity for monocytes compared with sham-depleted RA SF. CONCLUSION These results indicate that Fkn and its receptor are both expressed in RA and in rat AIA, and that sFkn is up-regulated in RA SF. Furthermore, our data suggest a new role for Fkn in monocyte chemotaxis in the inflamed RA joint.


Seminars in Immunology | 2003

Chemokines and chemokine receptors in rheumatoid arthritis

Zoltán Szekanecz; Joon Woo Kim; Alisa E. Koch

Chemokines are chemotactic cytokines involved in a number of pathological processes, including inflammatory conditions. Chemokines play a role in the pathogenesis of various inflammatory diseases. Based on a burgeoning body of literature, RA was chosen as a prototype to discuss this issue. In this review, the authors give a detailed introduction to the classification and function of chemokines and their receptors. This is followed by a discussion of the role of chemokines and chemokine receptors in RA. Chemokines interact with other inflammatory mediators, such as cytokines. Thus, the regulation of chemokine production and the place of chemokines in the network of inflammatory mediators present in the rheumatoid synovium are also reviewed. Finally, potential strategies using anti-chemokine or anti-chemokine receptor biologicals in anti-rheumatic therapy are discussed.


Journal of Clinical Investigation | 1994

Epithelial neutrophil activating peptide-78: a novel chemotactic cytokine for neutrophils in arthritis.

Alisa E. Koch; Steven L. Kunkel; Lisa A. Harlow; D D Mazarakis; George K. Haines; Marie D. Burdick; R M Pope; Alfred Walz; Robert M. Strieter

We and others have shown that cells obtained from inflamed joints of rheumatoid arthritis (RA) patients produce interleukin-8, a potent chemotactic cytokine for neutrophils (PMNs). However, IL-8 accounted for only 40% of the chemotactic activity for PMNs found in these synovial fluids. Currently, we have examined the production of the novel PMN chemotactic cytokine, epithelial neutrophil activating peptide-78 (ENA-78), using peripheral blood, synovial fluid, and synovial tissue from 70 arthritic patients. RA ENA-78 levels were greater in RA synovial fluid (239 +/- 63 ng/ml) compared with synovial fluid from other forms of arthritis (130 +/- 118 ng/ml) or osteoarthritis (2.6 +/- 1.8 ng/ml) (P < 0.05). RA peripheral blood ENA-78 levels (70 +/- 26 ng/ml) were greater than normal peripheral blood levels (0.12 +/- 0.04 ng/ml) (P < 0.05). Anti-ENA-78 antibodies neutralized 42 +/- 9% (mean +/- SE) of the chemotactic activity for PMNs found in RA synovial fluids. Isolated RA synovial tissue fibroblasts in vitro constitutively produced significant levels of ENA-78, and this production was further augmented when stimulated with tumor necrosis factor-alpha (TNF-alpha). In addition RA and osteoarthritis synovial tissue fibroblasts as well as RA synovial tissue macrophages were found to constitutively produce ENA-78. RA synovial fluid mononuclear cells spontaneously produced ENA-78, which was augmented in the presence of lipopolysaccharide. Immunohistochemical localization of ENA-78 from the synovial tissue of patients with arthritis or normal subjects showed that the predominant cellular source of this chemokine was synovial lining cells, followed by macrophages, endothelial cells, and fibroblasts. Synovial tissue macrophages and fibroblasts were more ENA-78 immunopositive in RA than in normal synovial tissue (P < 0.05). These results, which are the first demonstration of ENA-78 in a human disease state, suggest that ENA-78 may play an important role in the recruitment of PMNs in the milieu of the inflamed joint of RA patients.


American Journal of Pathology | 2001

Fractalkine: A Novel Angiogenic Chemokine in Rheumatoid Arthritis

Michael V. Volin; James M. Woods; M. Asif Amin; Matthew A. Connors; Lisa A. Harlow; Alisa E. Koch

Angiogenesis is an important aspect of the vasculoproliferation found in the rheumatoid arthritic (RA) pannus. We have previously implicated members of the CXC chemokine family as potent angiogenic mediators in RA. We investigated the possibility that the sole member of the CX(3)C chemokine family, fractalkine (fkn), induces angiogenesis and that fkn might mediate angiogenesis in RA. Recombinant human fkn significantly induced migration of human dermal microvascular endothelial cells (HMVECs), a facet of the angiogenic response, in the pmol/L range in a concentration-dependent manner (P < 0.05). Fkn also induced the formation of significantly more endothelial tubes on Matrigel than did a negative control (P < 0.05). Fkn significantly induced 2.3-fold more blood vessel growth than control in the in vivo Matrigel plug assays (P < 0.05). We identified HMVEC expression of the fkn receptor, CX(3)CR1. Next, we determined if RA synovial fluid (SF)-induced angiogenesis was fkn-dependent. SFs from six RA patients immunodepleted of soluble fkn induced 56% less migration of HMVECs than did sham-depleted RA SFs (P < 0.05). In vivo, immunodepletion of fkn from six RA SFs significantly inhibited their angiogenic activity in Matrigel plug assays (P < 0.05). Immunodepletion of fkn from five RA synovial tissue homogenates inhibited their ability to induce angiogenesis in in vivo Matrigel plug assays (P < 0.05). These results establish a new function for fkn as an angiogenic mediator and suggest that it may mediate angiogenesis in RA.

Collaboration


Dive into the Alisa E. Koch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge