Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alisha Anderson is active.

Publication


Featured researches published by Alisha Anderson.


Scientific Reports | 2017

Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges

Anaïs Gouin; Anthony Bretaudeau; Kiwoong Nam; Sylvie Gimenez; Jean-Marc Aury; Bernard Duvic; Frédérique Hilliou; Nicolas Durand; Nicolas Montagné; Isabelle Darboux; Suyog S. Kuwar; Thomas Chertemps; David Siaussat; Anne Bretschneider; Yves Moné; Seung-Joon Ahn; Sabine Hänniger; Anne-Sophie Gosselin Grenet; David Neunemann; Florian Maumus; Isabelle Luyten; Karine Labadie; Wei Xu; Fotini Koutroumpa; Jean-Michel Escoubas; Angel Llopis; Martine Maïbèche-Coisne; Fanny Salasc; Archana Tomar; Alisha Anderson

Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world’s worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains (“C” and “R”) that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.


Chemical Senses | 2009

Odorant Receptors from the Light brown Apple Moth (Epiphyas postvittana) Recognize Important Volatile Compounds Produced by Plants

Melissa D. Jordan; Alisha Anderson; Doreen Begum; Colm Carraher; Astrid Authier; Sean D.G. Marshall; Aidan Kiely; Laurence N. Gatehouse; David R. Greenwood; David L. Christie; Andrew V. Kralicek; Stephen C. Trowell; Richard D. Newcomb

Moths recognize a wide range of volatile compounds, which they use to locate mates, food sources, and oviposition sites. These compounds are recognized by odorant receptors (OR) located within the dendritic membrane of sensory neurons that extend into the lymph of sensilla, covering the surface of insect antennae. We have identified 3 genes encoding ORs from the tortricid moth, Epiphyas postvittana, a pest of horticulture. Like Drosophila melanogaster ORs, they contain 7 transmembrane helices with an intracellular N-terminus, an orientation in the plasma membrane opposite to that of classical GPCRs. EpOR2 is orthologous to the coreceptor Or83b from D. melanogaster. EpOR1 and EpOR3 both recognize a range of terpenoids and benzoates produced by plants. Of the compounds tested, EpOR1 shows the best sensitivity to methyl salicylate [EC(50) = 1.8 x 10(-12) M], a common constituent of floral scents and an important signaling compound produced by plants when under attack from insects and pathogens. EpOR3 best recognizes the monoterpene citral to low concentrations [EC(50) = 1.1 x 10(-13) M]. Citral produces the largest amplitude electrophysiological responses in E. postvittana antennae and elicits repellent activity against ovipositing female moths. Orthologues of EpOR3 were found across 6 families within the Lepidoptera, suggesting that the ability to recognize citral may underpin an important behavior.


Insect Biochemistry and Molecular Biology | 2009

Molecular basis of female-specific odorant responses in Bombyx mori

Alisha Anderson; Kevin W. Wanner; Stephen C. Trowell; Coral G. Warr; Emmanuelle Jaquin-Joly; Pierre Zagatti; Hugh M. Robertson; Richard D. Newcomb

Males and females of many moth species exhibit important differences in sexual behaviours. Much research in this field has focused on the male-specific behaviour, electrophysiology and molecular biology of sex pheromone reception. Female-specific behaviours have been less well studied although, like male-specific behaviours, they could provide opportunities for intervention and management of lepidopteran pests. Previously, we identified genes encoding putative odorant receptors (ORs) from the genome of the silkworm, Bombyx mori, some of which have higher levels of steady-state transcript in the antennae of adult females compared with males. We have identified the full-length cDNA sequences of some of these ORs and described a novel OR that is part of a female-biased clade. Using expression in Sf9 cells and a calcium-imaging assay, we tested a range of compounds for their ability to activate the most highly female-biased ORs, BmOR19, BmOR30, BmOR45 and BmOR47. BmOR19 responds to linalool, while BmOR45 and BmOR47 respond to benzoic acid > 2-phenylethanol > benzaldehyde. No activating ligands were found for BmOR30. RNA in situ hybridisation experiments reveal that BmOR19 is expressed in female olfactory sensory neurons that are co-located in the same sensilla as a second ORN expressing BmOR45 and/or BmOR47. Taken together the activity and expression of these receptors is likely explanatory of the observed electrophysiology of long sensilla trichoidea of female B. mori, previously shown to each contain one terpene (BmOR19) and one benzoic acid (BmOR45, BmOR47) sensory neuron. Plant volatiles such as linalool, benzoic acid, 2-phenylethanol and benzaldehyde are oviposition cues for females of some moths. These compounds have also been found in male-produced pheromone blends extracted from the hair pencils of many noctuid species. Hair pencil structures have not previously been reported for B. mori, but we have found hair pencil-like structures in adult male B. mori that are absent in female moths. It is proposed that BmOR19, BmOR45 and BmOR47 account for some of the female-specific odorant responses in B. mori, such as oviposition and/or detection of an as yet unidentified male-produced sex pheromone.


PLOS ONE | 2011

Topological and Functional Characterization of an Insect Gustatory Receptor

Hui-Jie Zhang; Alisha Anderson; Stephen C. Trowell; A-Rong Luo; Zhonghuai Xiang; Qing You Xia

Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples from Drosophila, the specificity of individual insect gustatory receptors is also unknown. In this study, the total number of identified gustatory receptors in Bombyx mori was expanded from 65 to 69. BmGr8, a silkmoth gustatory receptor from the sugar receptor subfamily, was expressed in insect cells. Membrane topology studies on BmGr8 indicate that, like insect olfactory receptors, it has an inverted topology relative to G protein-coupled receptors. An orphan GR from the bitter receptor family, BmGr53, yielded similar results. We infer, from the finding that two distantly related BmGrs have an intracellular N-terminus and an odd number of transmembrane spans, that this is likely to be a general topology for all insect gustatory receptors. We also show that BmGr8 functions independently in Sf9 cells and responds in a concentration-dependent manner to the polyalcohols myo-inositol and epi-inositol but not to a range of mono- and di-saccharides. BmGr8 is the first chemoreceptor shown to respond specifically to inositol, an important or essential nutrient for some Lepidoptera. The selectivity of BmGr8 responses is consistent with the known responses of one of the gustatory receptor neurons in the lateral styloconic sensilla of B. mori, which responds to myo-inositol and epi-inositol but not to allo-inositol.


BMC Genomics | 2014

Identification and characterization of three chemosensory receptor families in the cotton bollworm Helicoverpa armigera

Nai-Yong Liu; Wei Xu; Alexie Papanicolaou; Shuang-Lin Dong; Alisha Anderson

BackgroundChemosensory receptors including olfactory receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) play a central role in sensing chemical signals and guiding insect behaviours, and are potential target genes in insect pest control. The cotton bollworm Helicoverpa armigera is one of the most destructive pest species that can feed on over 200 different plant species. This diversity of host plants is likely linked to a complex chemosensory system. Here we built on previous work to characterize crucial chemosensory tissues linked to environmental interactions including larval antennae, larval mouthparts and larval fat bodies, as well as male and female adult heads, male and female adult tarsi, and female abdomens.ResultsUsing transcriptome sequencing, Trinity RNA-seq assemblies and extensive manual curation, we identified a total of 91 candidate chemosensory receptors (60 candidate ORs, 10 GRs and 21 IRs). Thirty-five of these candidates present full-length transcripts. First, we performed in silico differential expression analysis on different sequenced tissues. Further, we created extensive expression profiles using reverse transcription (RT)-PCR on a variety of adult and larval stages. We found that the expression profile of HarmOR51 was limited to adult male antenna suggesting a role in mating that was further supported by a phylogenetic analysis clustering it into the pheromone receptor clade. HarmOR51 in calcium imaging analysis did not show responses to either of the two H. armigera sex pheromone components (Z9-16:Ald or Z11-16:Ald) inviting a future detailed study. In addition, we found four novel HarmORs (OR1, 53, 54 and 58) that appeared to be larvae-antennal specific. Finally, our expression profiling showed that four “divergent” HarmIRs (IR2, 7d.1, 7d.2 and 7d.3) were expressed in both adult and larval antennae, suggesting a functional divergence from their Drosophila homologues.ConclusionsThis study explored three chemoreceptor superfamily genes using a curated transcriptomic approach coupled with extensive expression profiling and a more limited functional characterization. Our results have now provided an extensive resource for investigating the chemoreceptor complement of this insect pest, and meanwhile allow for targeted experiments to identify potential molecular targets for pest control and to investigate insect-plant interactions.


Biosensors and Bioelectronics | 2011

Greatly enhanced detection of a volatile ligand at femtomolar levels using bioluminescence resonance energy transfer (BRET)

Helen Dacres; Jian Wang; Virginia Leitch; Irene Horne; Alisha Anderson; Stephen C. Trowell

Our goal is to develop a general transduction system for G-protein coupled receptors (GPCRs). GPCRs are present in most eukaryote cells and transduce diverse extracellular signals. GPCRs comprise not only the largest class of integral membrane receptors but also the largest class of targets for therapeutic drugs. In all cases studied, binding of ligand to a GPCR leads to a sub-nanometer intramolecular rearrangement. Here, we report the creation of a novel chimaeric BRET-based biosensor by insertion of sequences encoding a bioluminescent donor and a fluorescent acceptor protein into the primary sequence of a GPCR. The BRET(2)-ODR-10 biosensor was expressed in membranes of Saccharomyces cerevisiae. Assays conducted on isolated membranes indicated an EC(50) in the femtomolar range for diacetyl. The response was ligand-specific and was abolished by a single point mutation in the receptor sequence. Novel BRET-GPCR biosensors of this type have potential application in many fields including explosive detection, quality control of food and beverage production, clinical diagnosis and drug discovery.


PLOS ONE | 2009

Bio-Benchmarking of Electronic Nose Sensors

Amalia Z. Berna; Alisha Anderson; Stephen C. Trowell

Background Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it has been described in detail only for the fly antenna. Methodology Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type, samples odorant space and compare it with what is known about fly odorant receptors (ORs). Principal Findings Compared with a flys odorant receptors, MOx sensors from an electronic nose are on average more narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also highlights some important questions about the molecular nature of fly ORs. Conclusions The comparative approach generates practical learnings that may be taken up by solid-state physicists or engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the performance of the biological system.


BMC Genomics | 2015

Chemosensory genes identified in the antennal transcriptome of the blowfly Calliphora stygia

Olivia Leitch; Alexie Papanicolaou; Chris Lennard; K. Paul Kirkbride; Alisha Anderson

BackgroundBlowflies have relevance in areas of forensic science, agriculture, and medicine, primarily due to the ability of their larvae to develop on flesh. While it is widely accepted that blowflies rely heavily on olfaction for identifying and locating hosts, there is limited research regarding the underlying molecular mechanisms. Using next generation sequencing (Illumina), this research examined the antennal transcriptome of Calliphora stygia (Fabricius) (Diptera: Calliphoridae) to identify members of the major chemosensory gene families necessary for olfaction.ResultsRepresentative proteins from all chemosensory gene families essential in insect olfaction were identified in the antennae of the blowfly C. stygia, including 50 odorant receptors, 22 ionotropic receptors, 21 gustatory receptors, 28 odorant binding proteins, 4 chemosensory proteins, and 3 sensory neuron membrane proteins. A total of 97 candidate cytochrome P450s and 39 esterases, some of which may act as odorant degrading enzymes, were also identified. Importantly, co-receptors necessary for the proper function of ligand-binding receptors were identified. Putative orthologues for the conserved antennal ionotropic receptors and candidate gustatory receptors for carbon dioxide detection were also amongst the identified proteins.ConclusionsThis research provides a comprehensive novel resource that will be fundamental for future studies regarding blowfly olfaction. Such information presents potential benefits to the forensic, pest control, and medical areas, and could assist in the understanding of insecticide resistance and targeted control through cross-species comparisons.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2015

Two general-odorant binding proteins in Spodoptera litura are differentially tuned to sex pheromones and plant odorants.

Nai-Yong Liu; Ke Yang; Yan Liu; Wei Xu; Alisha Anderson; Shuang-Lin Dong

Moths have evolved a sensitive and sophisticated olfactory system to sense a variety of semiochemicals from the external environment. In chemosensory processes, the odorant binding protein (OBP) is an essential element for filtering, binding and transporting hydrophobic odorant molecules to the specific receptors. Here focusing on a major sub-class of lepidopteran OBPs, general-odorant binding proteins (GOBPs), we explored the relationship and functional difference between two GOBP members from a noctuid species Spodoptera litura. Using genomic DNA as the template, we demonstrated that SlitGOBP2 and three SlitPBPs are clustered on the same chromosome within a close proximity. qPCR results showed that two SlitGOBPs were primarily expressed in antennae at similar levels between females and males, but GOBP2 displayed much higher expression than GOBP1. Binding studies revealed that both SlitGOBP1 and 2 strongly bound C14-C16 alcohol-pheromone analogs with high affinities (Ki<1.0 μM). However, SlitGOBP2 also strongly bound most acetate- and aldehyde-sex pheromone components and analogs, while SlitGOBP1 could not. For tested plant odorants, SlitGOBP1 showed a relatively broad ligand-binding spectrum with moderate affinities, while SlitGOBP2 was tuned to some compounds with strong binding activities (Ki<5.0 μM). Finally, by molecular docking we explored the differences in protein structures and potential key residues in the binding pockets between the two SlitGOBPs. Taken together, our study strongly suggests that SlitGOBP2 and SlitPBPs evolved by gene duplication events, and two SlitGOBPs have functionally differentiated in odorant recognition.


Journal of Chemical Ecology | 2012

A Sugar Gustatory Receptor Identified from the Foregut of Cotton Bollworm Helicoverpa armigera

Wei Xu; Hui-Jie Zhang; Alisha Anderson

Helicoverpa armigera (Hübner) is one of the most polyphagous and cosmopolitan pest species, the larvae of which feed on numerous important crops. The gustatory system is critical in guiding insect feeding behavior. Here, we identified a gustatory receptor from H. armigera, HaGR9, which shows high levels of identity to DmGR43a from Drosophila melanogaster and BmGR9 from Bombyx mori. Reverse transcriptase PCR (RT-PCR) revealed HaGR9 is highly expressed in larval foregut, with little or no expression in other chemosensory tissues. Membrane topology studies indicated that, like two previously studied B. mori GRs, BmGR8 and BmGR53, HaGR9 has an inverted topology relative to G protein-coupled receptors (GPCRs), an intracellular N-terminus and an extracellular C-terminus. Calcium imaging studies confirmed HaGR9 is a sugar receptor showing dose-dependent responses to D-galactose, D-maltose, and D-fructose. This highly-expressed foregut-specific gustatory receptor may contribute to the regulation of larval feeding behavior.

Collaboration


Dive into the Alisha Anderson's collaboration.

Top Co-Authors

Avatar

Stephen C. Trowell

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Dacres

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Nai-Yong Liu

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Alexie Papanicolaou

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Hui-Jie Zhang

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuang-Lin Dong

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Amalia Z. Berna

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge