Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison A. Motsinger-Reif is active.

Publication


Featured researches published by Alison A. Motsinger-Reif.


Blood | 2010

Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups

Nita A. Limdi; Mia Wadelius; Larisa H. Cavallari; Niclas Eriksson; Dana C. Crawford; Ming Ta M. Lee; Chien Hsiun Chen; Alison A. Motsinger-Reif; Hersh Sagreiya; Nianjun Liu; Alan H.B. Wu; Brian F. Gage; Andrea Jorgensen; Munir Pirmohamed; Jae Gook Shin; Guilherme Suarez-Kurtz; Stephen E. Kimmel; Julie A. Johnson; Teri E. Klein; Michael J. Wagner

Warfarin-dosing algorithms incorporating CYP2C9 and VKORC1 -1639G>A improve dose prediction compared with algorithms based solely on clinical and demographic factors. However, these algorithms better capture dose variability among whites than Asians or blacks. Herein, we evaluate whether other VKORC1 polymorphisms and haplotypes explain additional variation in warfarin dose beyond that explained by VKORC1 -1639G>A among Asians (n = 1103), blacks (n = 670), and whites (n = 3113). Participants were recruited from 11 countries as part of the International Warfarin Pharmacogenetics Consortium effort. Evaluation of the effects of individual VKORC1 single nucleotide polymorphisms (SNPs) and haplotypes on warfarin dose used both univariate and multi variable linear regression. VKORC1 -1639G>A and 1173C>T individually explained the greatest variance in dose in all 3 racial groups. Incorporation of additional VKORC1 SNPs or haplotypes did not further improve dose prediction. VKORC1 explained greater variability in dose among whites than blacks and Asians. Differences in the percentage of variance in dose explained by VKORC1 across race were largely accounted for by the frequency of the -1639A (or 1173T) allele. Thus, clinicians should recognize that, although at a population level, the contribution of VKORC1 toward dose requirements is higher in whites than in nonwhites; genotype predicts similar dose requirements across racial groups.


The Journal of Infectious Diseases | 2010

Effect of CYP2B6, ABCB1, and CYP3A5 polymorphisms on efavirenz pharmacokinetics and treatment response: an AIDS Clinical Trials Group Study.

Heather J. Ribaudo; Huan Liu; Matthias Schwab; Elke Schaeffeler; Michel Eichelbaum; Alison A. Motsinger-Reif; Marylyn D. Ritchie; Ulrich M. Zanger; Edward P. Acosta; Gene D. Morse; Roy M. Gulick; Gregory K. Robbins; David B. Clifford; David W. Haas

In AIDS Clinical Trials Group protocols 384, A5095, and A5097s, we characterized relationships between 22 polymorphisms in CYP2B6, ABCB1, and CYP3A5; plasma efavirenz exposure; and/or treatment responses. A stepwise logistic regression procedure selected polymorphisms associated with reduced drug clearance adjusted for body mass index and the composite CYP2B6 516/983 genotype. Relationships between selected polymorphisms and treatment responses were characterized by competing risk methodology. Association analyses involved 821 individuals (317 for pharmacokinetics and 643 for treatment response). Models that included CYP2B6 516/983 genotype best predicted pharmacokinetics. Slow-metabolizer genotypes were associated with increased central nervous system events among white participants and decreased virologic failure among black participants.


PLOS ONE | 2011

Shift Work in Nurses: Contribution of Phenotypes and Genotypes to Adaptation

Karen L. Gamble; Alison A. Motsinger-Reif; Akiko Hida; Hugo M. Borsetti; Stein V. Servick; Christopher M. Ciarleglio; Sam Robbins; Jennifer Hicks; Krista Carver; Nalo Hamilton; Nancy Wells; Marshall Summar; Douglas G. McMahon; Carl Hirschie Johnson

Background Daily cycles of sleep/wake, hormones, and physiological processes are often misaligned with behavioral patterns during shift work, leading to an increased risk of developing cardiovascular/metabolic/gastrointestinal disorders, some types of cancer, and mental disorders including depression and anxiety. It is unclear how sleep timing, chronotype, and circadian clock gene variation contribute to adaptation to shift work. Methods Newly defined sleep strategies, chronotype, and genotype for polymorphisms in circadian clock genes were assessed in 388 hospital day- and night-shift nurses. Results Night-shift nurses who used sleep deprivation as a means to switch to and from diurnal sleep on work days (∼25%) were the most poorly adapted to their work schedule. Chronotype also influenced efficacy of adaptation. In addition, polymorphisms in CLOCK, NPAS2, PER2, and PER3 were significantly associated with outcomes such as alcohol/caffeine consumption and sleepiness, as well as sleep phase, inertia and duration in both single- and multi-locus models. Many of these results were specific to shift type suggesting an interaction between genotype and environment (in this case, shift work). Conclusions Sleep strategy, chronotype, and genotype contribute to the adaptation of the circadian system to an environment that switches frequently and/or irregularly between different schedules of the light-dark cycle and social/workplace time. This study of shift work nurses illustrates how an environmental “stress” to the temporal organization of physiology and metabolism can have behavioral and health-related consequences. Because nurses are a key component of health care, these findings could have important implications for health-care policy.


Journal of Alternative and Complementary Medicine | 2010

Auriculotherapy for Pain Management: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Gary Asher; Daniel E. Jonas; Remy R Coeytaux; Aimee C. Reilly; Yen L. Loh; Alison A. Motsinger-Reif; Stacey J. Winham

OBJECTIVES Side-effects of standard pain medications can limit their use. Therefore, nonpharmacologic pain relief techniques such as auriculotherapy may play an important role in pain management. Our aim was to conduct a systematic review and meta-analysis of studies evaluating auriculotherapy for pain management. DESIGN MEDLINE,(®) ISI Web of Science, CINAHL, AMED, and Cochrane Library were searched through December 2008. Randomized trials comparing auriculotherapy to sham, placebo, or standard-of-care control were included that measured outcomes of pain or medication use and were published in English. Two (2) reviewers independently assessed trial eligibility, quality, and abstracted data to a standardized form. Standardized mean differences (SMD) were calculated for studies using a pain score or analgesic requirement as a primary outcome. RESULTS Seventeen (17) studies met inclusion criteria (8 perioperative, 4 acute, and 5 chronic pain). Auriculotherapy was superior to controls for studies evaluating pain intensity (SMD, 1.56 [95% confidence interval (CI): 0.85, 2.26]; 8 studies). For perioperative pain, auriculotherapy reduced analgesic use (SMD, 0.54 [95% CI: 0.30, 0.77]; 5 studies). For acute pain and chronic pain, auriculotherapy reduced pain intensity (SMD for acute pain, 1.35 [95% CI: 0.08, 2.64], 2 studies; SMD for chronic pain, 1.84 [95% CI: 0.60, 3.07], 5 studies). Removal of poor quality studies did not alter the conclusions. Significant heterogeneity existed among studies of acute and chronic pain, but not perioperative pain. CONCLUSIONS Auriculotherapy may be effective for the treatment of a variety of types of pain, especially postoperative pain. However, a more accurate estimate of the effect will require further large, well-designed trials.


Genetic Epidemiology | 2008

Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.

Alison A. Motsinger-Reif; Scott M. Dudek; Lance W. Hahn; Marylyn D. Ritchie

The detection of genotypes that predict common, complex disease is a challenge for human geneticists. The phenomenon of epistasis, or gene‐gene interactions, is particularly problematic for traditional statistical techniques. Additionally, the explosion of genetic information makes exhaustive searches of multilocus combinations computationally infeasible. To address these challenges, neural networks (NN), a pattern recognition method, have been used. One limitation of the NN approach is that its success is dependent on the architecture of the network. To solve this, machine‐learning approaches have been suggested to evolve the best NN architecture for a particular data set. In this study we provide a detailed technical description of the use of grammatical evolution to optimize neural networks (GENN) for use in genetic association studies. We compare the performance of GENN to that of a previous machine‐learning NN application—genetic programming neural networks in both simulated and real data. We show that GENN greatly outperforms genetic programming neural networks in data sets with a large number of single nucleotide polymorphisms. Additionally, we demonstrate that GENN has high power to detect disease‐risk loci in a range of high‐order epistatic models. Finally, we demonstrate the scalability of the GENN method with increasing numbers of variables—as many as 500,000 single nucleotide polymorphisms. Genet. Epidemiol. 2008.


Translational Psychiatry | 2013

Alterations in metabolic pathways and networks in Alzheimer's disease

Rima Kaddurah-Daouk; Hongjie Zhu; Swati Sharma; Mikhail B. Bogdanov; Steve Rozen; Wayne R. Matson; Noffisat O. Oki; Alison A. Motsinger-Reif; Erik Churchill; Zhengdeng Lei; Dina Appleby; Mitchel A. Kling; John Q. Trojanowski; P M Doraiswamy; Steven E. Arnold

The pathogenic mechanisms of Alzheimer’s disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.


Pharmacogenetics and Genomics | 2013

Genome-wide association studies in pharmacogenomics: successes and lessons.

Alison A. Motsinger-Reif; Eric Jorgenson; Mary V. Relling; Deanna L. Kroetz; Richard M. Weinshilboum; Nancy J. Cox; Dan M. Roden

Objective As genotyping technology has progressed, genome-wide association studies (GWAS) have matured into efficient and effective tools for mapping genes underlying human phenotypes. Methods Recent studies have shown the utility of the GWAS approach for examining pharmacogenomic traits, including drug metabolism, efficacy, and toxicity. Results Application of GWAS to pharmacogenomic outcomes presents unique challenges and opportunities. Conclusion In the current review, we discuss the potential promises and potential caveats of this approach specifically as it relates to pharmacogenomic studies. Concerns with study design, power and sample size, and analysis are reviewed. We further examine the features of successful pharmacogenomic GWAS, and describe consortia efforts that are likely to expand the reach of pharmacogenomic GWAS in the future.


Biology of Reproduction | 2009

Characterization of Conserved and Nonconserved Imprinted Genes in Swine

Steve Bischoff; Shengdar Tsai; Nicholas E. Hardison; Alison A. Motsinger-Reif; Brad A. Freking; Dan J. Nonneman; G. A. Rohrer; Jorge A. Piedrahita

To increase our understanding of imprinted genes in swine, we carried out a comprehensive analysis of this gene family using two complementary approaches: expression and phenotypic profiling of parthenogenetic fetuses, and analysis of imprinting by pyrosequencing. The parthenote placenta and fetus were smaller than those of controls but had no obvious morphological differences at Day 28 of gestation. By Day 30, however, the parthenote placentas had decreased chorioallantoic folding, decreased chorionic ruggae, and reduction of fetal-maternal interface surface in comparison with stage-matched control fetuses. Using Affymetrix Porcine GeneChip microarrays and/or semiquantitative PCR, brain, fibroblast, liver, and placenta of Day 30 fetuses were profiled, and 25 imprinted genes were identified as differentially expressed in at least one of the four tissue types: AMPD3, CDKN1C, COPG2, DHCR7, DIRAS3, IGF2 (isoform specific), IGF2AS, IGF2R, MEG3, MEST, NAP1L5, NDN, NNAT, OSBPL1A, PEG3, APEG3, PEG10, PLAGL1, PON2, PPP1R9A, SGCE, SLC38A4, SNORD107, SNRPN, and TFPI2. For DIRAS3, PLAGL1, SGCE, and SLC38A4, tissue-specific differences were detected. In addition, we examined the imprinting status of candidate genes by quantitative allelic pyrosequencing. Samples were collected from Day 30 pregnancies generated from reciprocal crosses of Meishan and White Composite breeds, and single-nucleotide polymorphisms were identified in candidate genes. Imprinting was confirmed for DIRAS3, DLK1, H19, IGF2AS, NNAT, MEST, PEG10, PHLDA2, PLAGL1, SGCE, and SNORD107. We also found no evidence of imprinting in ASB4, ASCL2, CD81, COMMD1, DCN, DLX5, and H13. Combined, these results represent the most comprehensive survey of imprinted genes in swine to date.


Cancer Research | 2013

Gene Profiling of Canine B-Cell Lymphoma Reveals Germinal Center and Postgerminal Center Subtypes with Different Survival Times, Modeling Human DLBCL

Kristy L. Richards; Alison A. Motsinger-Reif; Hsiao Wei Chen; Yuri Fedoriw; Cheng Fan; Dahlia M. Nielsen; George W. Small; Rachael Thomas; Chris Smith; Sandeep S. Dave; Charles M. Perou; Matthew Breen; Luke B. Borst; Steven E. Suter

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype, and fewer than half of patients are cured with standard first-line therapy. To improve therapeutic options, better animal models that accurately mimic human DLBCL (hDLBCL) are needed. Canine DLBCL, one of the most common cancers in veterinary oncology, is morphologically similar to hDLBCL and is treated using similar chemotherapeutic protocols. With genomic technologies, it is now possible to molecularly evaluate dogs as a potential large-animal model for hDLBCL. We evaluated canine B-cell lymphomas (cBCL) using immunohistochemistry (IHC) and gene expression profiling. cBCL expression profiles were similar in many ways to hDLBCLs. For instance, a subset had increased expression of NF-κB pathway genes, mirroring human activated B-cell (ABC)-type DLBCL. Furthermore, immunoglobulin heavy chain ongoing mutation status, which is correlated with ABC/germinal center B-cell cell of origin in hDLBCL, separated cBCL into two groups with statistically different progression-free and overall survival times. In contrast with hDLBCL, cBCL rarely expressed BCL6 and MUM1/IRF4 by IHC. Collectively, these studies identify molecular similarities to hDLBCL that introduce pet dogs as a representative model of hDLBCL for future studies, including therapeutic clinical trials.


Leukemia & Lymphoma | 2011

Refining tumor-associated aneuploidy through ‘genomic recoding’ of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas

Rachael Thomas; Eric L. Seiser; Alison A. Motsinger-Reif; Luke B. Borst; Victor E. Valli; Kathryn Kelley; Steven E. Suter; David Argyle; Kristine Burgess; Jerold Bell; Kerstin Lindblad-Toh; Jaime F. Modiano; Matthew Breen

Identification of the genomic regions most intimately associated with non-Hodgkin lymphoma (NHL) pathogenesis is confounded by the genetic heterogeneity of human populations. We hypothesize that the restricted genetic variation of purebred dogs, combined with the contrasting architecture of the human and canine karyotypes, will increase the penetrance of fundamental NHL-associated chromosomal aberrations in both species. We surveyed non-random aneuploidy in 150 canine NHL cases, revealing limited genomic instability compared to their human counterparts and no evidence for CDKN2A/B deletion in canine B-cell NHL. ‘Genomic recoding’ of canine NHL data into a ‘virtual human’ chromosome format showed remarkably few regions of copy number aberration (CNA) shared between both species, restricted to regions of dog chromosomes 13 and 31, and human chromosomes 8 and 21. Our data suggest that gene discovery in NHL may be enhanced through comparative studies exploiting the less complex association between CNAs and tumor pathogenesis in canine patients.

Collaboration


Dive into the Alison A. Motsinger-Reif's collaboration.

Top Co-Authors

Avatar

Daniel M. Rotroff

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Howard L. McLeod

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Jack

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Tammy M. Havener

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Matthew Breen

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Michael J. Wagner

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nicholas E. Hardison

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Oliver Fiehn

University of California

View shared research outputs
Top Co-Authors

Avatar

John B. Buse

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge