Alison Cameron
Queen's University Belfast
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alison Cameron.
Science | 2008
Claire Kremen; Alison Cameron; Atte Moilanen; S.J. Phillips; Chris D. Thomas; H. Beentje; J. Dransfield; Brian L. Fisher; Frank Glaw; T. C. Good; Grady J. Harper; Robert J. Hijmans; David C. Lees; Edward E. Louis; Ronald A. Nussbaum; Christopher J. Raxworthy; A. Razafimpahanana; George E. Schatz; Miguel Vences; David R. Vieites; Michelle L. Zjhra
Globally, priority areas for biodiversity are relatively well known, yet few detailed plans exist to direct conservation action within them, despite urgent need. Madagascar, like other globally recognized biodiversity hot spots, has complex spatial patterns of endemism that differ among taxonomic groups, creating challenges for the selection of within-country priorities. We show, in an analysis of wide taxonomic and geographic breadth and high spatial resolution, that multitaxonomic rather than single-taxon approaches are critical for identifying areas likely to promote the persistence of most species. Our conservation prioritization, facilitated by newly available techniques, identifies optimal expansion sites for the Madagascar governments current goal of tripling the land area under protection. Our findings further suggest that high-resolution multitaxonomic approaches to prioritization may be necessary to ensure protection for biodiversity in other global hot spots.
Biology Letters | 2008
Lee Hannah; Radhika Dave; Porter P. Lowry; Sandy J. Andelman; Michele Andrianarisata; Luciano Andriamaro; Alison Cameron; Robert J. Hijmans; Claire Kremen; James L. MacKinnon; Harison Randrianasolo; Sylvie Andriambololonera; Andriamandimbisoa Razafimpahanana; Herilala Randriamahazo; Jeannicq Randrianarisoa; Philippe Razafinjatovo; Chris Raxworthy; George E. Schatz; Mark Tadross; Lucienne Wilmé
Madagascars imperilled biota are now experiencing the effects of a new threat—climate change ([Raxworthy et al . 2008][1]). With more than 90% endemism among plants, mammals, reptiles and amphibians, the stakes are high. The pristine landscapes that allowed this exceptional biodiversity to
Biology Letters | 2007
Ilkka Hanski; Helena Koivulehto; Alison Cameron; Pierre Rahagalala
Madagascar has lost about half of its forest cover since 1953 with much regional variation, for instance most of the coastal lowland forests have been cleared. We sampled the endemic forest-dwelling Helictopleurini dung beetles across Madagascar during 2002–2006. Our samples include 29 of the 51 previously known species for which locality information is available. The most significant factor explaining apparent extinctions (species not collected by us) is forest loss within the historical range of the focal species, suggesting that deforestation has already caused the extinction, or effective extinction, of a large number of insect species with small geographical ranges, typical for many endemic taxa in Madagascar. Currently, roughly 10% of the original forest cover remains. Species–area considerations suggest that this will allow roughly half of the species to persist. Our results are consistent with this prediction.
Evolution | 2004
Evgueni V. Zakharov; Campbell R. Smith; David C. Lees; Alison Cameron; R. I. Vane-Wright; Felix A. H. Sperling
Abstract Madagascar is home to numerous endemic species and lineages, but the processes that have contributed to its endangered diversity are still poorly understood. Evidence is accumulating to demonstrate the importance of Tertiary dispersal across varying distances of oceanic barriers, supplementing vicariance relationships dating back to the Cretaceous, but these hypotheses remain tentative in the absence of well‐supported phylogenies. In the Papilio demoleus group of swallowtail butterflies, three of the five recognized species are restricted to Madagascar, whereas the remaining two species range across the Afrotropical zone and southern Asia plus Australia. We reconstructed phylogenetic relationships for all species in the P. demoleus group, as well as 11 outgroup Papilio species, using 60 morphological characters and about 4 kb of nucleotide sequences from two mitochondrial (cytochrome oxidase I and II) and two nuclear (wg and EF‐1α) genes. Of the three endemic Malagasy species, the two that are formally listed as endangered or at risk represented the most basal divergences in the group, while the more common third endemic was clearly related to African P. demodocus. The fifth species, P. demoleus, showed little differentiation across southern Asia, but showed divergence from its subspecies sthenelus in Australia. Dispersal‐vicariance analysis using cladograms derived from morphology and three independent genes indicated a Malagasy diversification of lime swallowtails in the middle Miocene. Thus, diversification processes on the island of Madagascar may have contributed to the origin of common butterflies that now occur throughout much of the Old World tropical and subtemperate regions. An alternative hypothesis, that Madagascar is a refuge for ancient lineages resulting from successive colonizations from Africa, is less parsimonious and does not explain the relatively low continental diversity of the group.
Nature | 2004
Chris D. Thomas; Stephen E. Williams; Alison Cameron; Rhys E. Green; Michel Bakkenes; Linda J. Beaumont; Yvonne C. Collingham; Barend F.N. Erasmus; M. Ferreira De Sequeira; Alan Grainger; Lee Hannah; Laura E. Hughes; Brian Huntley; A. S. Van Jaarsveld; Guy F. Midgley; Lera Miles; Miguel A. Ortega-Huerta; Andrew Townsend Peterson; Oliver L. Phillips
Thomas et al. reply — We reconsider our estimates of climate-related extinction in the light of three questions raised by Thuiller et al., Buckley and Roughgarden and Harte et al.. We are able to confirm our original conclusion that climate change represents a major threat to terrestrial species.
Scientific Reports | 2015
Martin Wikelski; Elena Arriero; Anna Gagliardo; Richard A. Holland; Markku J. Huttunen; Risto Juvaste; Inge Mueller; Grigori Tertitski; Kasper Thorup; Martin Wild; Markku Alanko; Franz Bairlein; Alexander Cherenkov; Alison Cameron; Reinhard Flatz; Juhani Hannila; Ommo Hüppop; Markku Kangasniemi; Bart Kranstauber; Maija-Liisa Penttinen; Kamran Safi; Vladimir Semashko; Heidi Schmid; Ralf Wistbacka
During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances.
PLOS ONE | 2015
Katie Leach; Ruth Kelly; Alison Cameron; W. Ian Montgomery; Neil Reid
Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species’ bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed ‘modellable’ within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov’s Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions.
Ecology and Evolution | 2013
Rado H. Andriamasimanana; Alison Cameron
The greatest common threat to birds in Madagascar has historically been from anthropogenic deforestation. During recent decades, global climate change is now also regarded as a significant threat to biodiversity. This study uses Maximum Entropy species distribution modeling to explore how potential climate change could affect the distribution of 17 threatened forest endemic bird species, using a range of climate variables from the Hadley Centers HadCM3 climate change model, for IPCC scenario B2a, for 2050. We explore the importance of forest cover as a modeling variable and we test the use of pseudo-presences drawn from extent of occurrence distributions. Inclusion of the forest cover variable improves the models and models derived from real-presence data with forest layer are better predictors than those from pseudo-presence data. Using real-presence data, we analyzed the impacts of climate change on the distribution of nine species. We could not predict the impact of climate change on eight species because of low numbers of occurrences. All nine species were predicted to experience reductions in their total range areas, and their maximum modeled probabilities of occurrence. In general, species range and altitudinal contractions follow the reductive trend of the Maximum presence probability. Only two species (Tyto soumagnei and Newtonia fanovanae) are expected to expand their altitude range. These results indicate that future availability of suitable habitat at different elevations is likely to be critical for species persistence through climate change. Five species (Eutriorchis astur, Neodrepanis hypoxantha, Mesitornis unicolor, Euryceros prevostii, and Oriola bernieri) are probably the most vulnerable to climate change. Four of them (E. astur, M. unicolor, E. prevostii, and O. bernieri) were found vulnerable to the forest fragmentation during previous research. Combination of these two threats in the future could negatively affect these species in a drastic way. Climate change is expected to act differently on each species and it is important to incorporate complex ecological variables into species distribution models.
Archive | 2012
Alison Cameron
In 2004 nineteen scientists from fourteen institutions in seven countries collaborated in the landmark study described in chapter 2 (Thomas et al., 2004a). This chapter provides an overview of results of studies published subsequently and assesses how much, and why, new results differ from those of Thomas et al.
bioRxiv | 2014
Katie Leach; Ruth Kelly; Alison Cameron; W. Ian Montgomery; Neil Reid
Climate change during the last five decades has impacted on natural systems 16 significantly and the rate of current climate change is of great concern among 17 conservation biologists. Here, we assess the projected change in the bioclimatic 18 envelopes of all 87 species in the mammalian order Lagomorpha under future climate 19 using expertly validated species distribution models. Results suggest that climate 20 change will impact more than two-thirds of Lagomorphs, with leporids (rabbits, hares 21 and jackrabbits) likely to undertake poleward shifts with little overall change in range 22 extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with 23 marked range declines, including the likely extinction of Kozlov’s Pika (Ochotona 24 koslowi). Species traits were associated with predictions of change, with smaller-bodied 25 species more likely to exhibit range contractions and elevational increases, but showing 26 little poleward movement. Lagomorphs vulnerable to climate change require urgent 27 conservation management to mitigate range declines and/or extinctions. 28 29 not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/001826 doi: bioRxiv preprint first posted online Jan. 14, 2014;Climate change during the last five decades has impacted significantly on natural ecosystems and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species’ bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian Order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical and habitat variables for all 87 species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current distribution models and only those deemed ‘modellable’ through our framework were projected under future climate scenarios (58 species). We then used phylogenetically-controlled regressions to test whether species traits were correlated with predicted responses to climate change. Climate change will impact more than two-thirds of the Lagomorpha, with leporids (rabbits, hares and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov’s Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management.