Alison Cowie
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alison Cowie.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Turlough M. Finan; Stefan Weidner; Kim Wong; Jens Buhrmester; Patrick Chain; Frank J. Vorhölter; Ismael Hernández-Lucas; Anke Becker; Alison Cowie; Jérôme Gouzy; Brian Golding; Alfred Pühler
Analysis of the 1,683,333-nt sequence of the pSymB megaplasmid from the symbiotic N2-fixing bacterium Sinorhizobium meliloti revealed that the replicon has a high gene density with a total of 1,570 protein-coding regions, with few insertion elements and regions duplicated elsewhere in the genome. The only copies of an essential arg-tRNA gene and the minCDE genes are located on pSymB. Almost 20% of the pSymB sequence carries genes encoding solute uptake systems, most of which were of the ATP-binding cassette family. Many previously unsuspected genes involved in polysaccharide biosynthesis were identified and these, together with the two known distinct exopolysaccharide synthesis gene clusters, show that 14% of the pSymB sequence is dedicated to polysaccharide synthesis. Other recognizable gene clusters include many involved in catabolic activities such as protocatechuate utilization and phosphonate degradation. The functions of these genes are consistent with the notion that pSymB plays a major role in the saprophytic competence of the bacteria in the soil environment.
Applied and Environmental Microbiology | 2006
Alison Cowie; Jiujun Cheng; Christopher D. Sibley; Ying Fong; Rahat Zaheer; Cheryl L. Patten; Richard M. Morton; G. Brian Golding; Turlough M. Finan
ABSTRACT As a means of investigating gene function, we developed a robust transcription fusion reporter vector to measure gene expression in bacteria. The vector, pTH1522, was used to construct a random insert library for the Sinorhizobium meliloti genome. pTH1522 replicates in Escherichia coli and can be transferred to, but cannot replicate in, S. meliloti. Homologous recombination of the DNA fragments cloned in pTH1522 into the S. meliloti genome generates transcriptional fusions to either the reporter genes gfp+ and lacZ or gusA and rfp, depending on the orientation of the cloned fragment. Over 12,000 fusion junctions in 6,298 clones were identified by DNA sequence analysis, and the plasmid clones were recombined into S. meliloti. Reporter enzyme activities following growth of these recombinants in complex medium (LBmc) and in minimal medium with glucose or succinate as the sole carbon source allowed the identification of genes highly expressed under one or more growth condition and those expressed at very low to background levels. In addition to generating reporter gene fusions, the vector allows Flp recombinase-directed deletion formation and gene disruption, depending on the nature of the cloned fragment. We report the identification of genes essential for growth on complex medium as deduced from an inability to recover recombinants from pTH1522 clones that carried fragments internal to gene or operon transcripts. A database containing all the gene expression activities together with a web interface showing the precise locations of reporter fusion junctions has been constructed (www.sinorhizobium.org ).
Journal of Biological Chemistry | 1998
Michael J. Mitsch; Ralf T. Voegele; Alison Cowie; Magne Østerås; Turlough M. Finan
Malic enzymes catalyze the oxidative decarboxylation of malate to pyruvate in conjunction with the reduction of a nicotinamide cofactor. We determined the DNA sequence and transcriptional start sites of the genes encoding the diphosphopyridine nucleotide-dependent malic enzyme (DME, EC 1.1.1.39) and the triphosphopyridine nucleotide-dependent malic enzyme (TME, EC 1.1.1.40) of Rhizobium (Sinorhizobium) meliloti. The predicted DME and TME proteins contain 770 and 764 amino acids, respectively, and are approximately 320 amino acids larger than previously characterized prokaryotic malic enzymes. The increased size of DME and TME resides in the C-terminal extensions which are similar in sequence to phosphotransacetylase enzymes (EC 2.3.1.8). Modified DME and TME proteins which lack this C-terminal region retain malic enzyme activity but are unable to oligomerize into the native state. Data base searches have revealed that similar chimeric malic enzymes were uniquely present in Gram-negative bacteria. Thus DME and TME appear to be members of a new class of malic enzyme characterized by the presence of a phosphotransacetylase-like domain at the C terminus of the protein.
Journal of Bacteriology | 2007
Michael J. Mitsch; Alison Cowie; Turlough M. Finan
The NAD(+)-dependent malic enzyme (DME) and the NADP(+)-dependent malic enzyme (TME) of Sinorhizobium meliloti are representatives of a distinct class of malic enzymes that contain a 440-amino-acid N-terminal region homologous to other malic enzymes and a 330-amino-acid C-terminal region with similarity to phosphotransacetylase enzymes (PTA). We have shown previously that dme mutants of S. meliloti fail to fix N(2) (Fix(-)) in alfalfa root nodules, whereas tme mutants are unimpaired in their N(2)-fixing ability (Fix(+)). Here we report that the amount of DME protein in bacteroids is 10 times greater than that of TME. We therefore investigated whether increased TME activity in nodules would allow TME to function in place of DME. The tme gene was placed under the control of the dme promoter, and despite elevated levels of TME within bacteroids, no symbiotic nitrogen fixation occurred in dme mutant strains. Conversely, expression of dme from the tme promoter resulted in a large reduction in DME activity and symbiotic N(2) fixation. Hence, TME cannot replace the symbiotic requirement for DME. In further experiments we investigated the DME PTA-like domain and showed that it is not required for N(2) fixation. Thus, expression of a DME C-terminal deletion derivative or the Escherichia coli NAD(+)-dependent malic enzyme (sfcA), both of which lack the PTA-like region, restored wild-type N(2) fixation to a dme mutant. Our results have defined the symbiotic requirements for malic enzyme and raise the possibility that a constant high ratio of NADPH + H(+) to NADP in nitrogen-fixing bacteroids prevents TME from functioning in N(2)-fixing bacteroids.
Microbiology | 2015
George C. diCenzo; Maryam Zamani; Alison Cowie; Turlough M. Finan
In order to effectively manipulate rhizobium-legume symbioses for our benefit, it is crucial to first gain a complete understanding of the underlying genetics and metabolism. Studies with rhizobium auxotrophs have provided insight into the requirement for amino acid biosynthesis during the symbiosis; however, a paucity of available L-proline auxotrophs has limited our understanding of the role of L-proline biosynthesis. Here, we examined the symbiotic phenotypes of a recently described Sinorhizobium meliloti L-proline auxotroph. Proline auxotrophy was observed to result in a host-plant-specific phenotype. The S. meliloti auxotroph displayed reduced symbiotic capability with alfalfa (Medicago sativa) due to a decrease in nodule mass formed and therefore a reduction in nitrogen fixed per plant. However, the proline auxotroph formed nodules on white sweet clover (Melilotus alba) that failed to fix nitrogen. The rate of white sweet clover nodulation by the auxotroph was slightly delayed, but the final number of nodules per plant was not impacted. Examination of white sweet clover nodules by confocal microscopy and transmission electron microscopy revealed the presence of the S. meliloti proline auxotroph cells within the host legume cells, but few differentiated bacteroids were identified compared with the bacteroid-filled plant cells of WT nodules. Overall, these results indicated that L-proline biosynthesis is a general requirement for a fully effective nitrogen-fixing symbiosis, likely due to a transient requirement during bacteroid differentiation.
Archive | 2008
Alison Cowie; Jiujun Cheng; B. Poduska; A. MacLean; Rahat Zaheer; Richard A. Morton; Turlough M. Finan
through Sustainable Agriculture.
Archive | 1998
Michael J. Mitsch; Ralf T. Voegele; Alison Cowie; Turlough M. Finan
C4 dicarboxylic acids such as succinate and malate are believed to be the major carbon sources utilized by Rhizobium species during the symbiotic association with their plant hosts. These carbon sources are oxidized via the TCA cycle to produce the necessary ATP and reducing power for conversion of atmospheric nitrogen to ammonia. Since oxaloacetate and acetyl-CoA are essential for the formation of citrate to maintain the TCA cycle, a method must exist within the bacteroid to produce these essential components from the nutrients donated by the plant host. Malic enzymes convert malate to pyruvate while pyruvate dehydrogenase converts pyruvate to acetyl-CoA. Previous studies in this laboratory have shown that Rhizobium meliloti contains two distinct malic enzymes, one dependent on NADP+ (TME) (Driscoll, Finan, 1996) while the second preferentially uses NAD+ (DME) (Driscoll, Finan, 1993) as co-factor. Mutants lacking these proteins have been produced and the resulting symbiotic phenotypes show that dme is necessary for nitrogen fixation while tme is not. The dme and tme genes (Driscoll, Finan, 1997) were sequenced, and the DME and TME proteins were overproduced and purified to homogeneity from an Escherichia coli background in order to study their structure and enzymatic characteristics.
Science | 2001
Francis Galibert; Turlough M. Finan; Sharon R. Long; Alfred Pühler; Pia Abola; Frédéric Ampe; Frédérique Barloy-Hubler; Melanie J. Barnett; Anke Becker; Pierre Boistard; Gordana Bothe; Marc Boutry; Leah Bowser; Jens Buhrmester; Edouard Cadieu; Delphine Capela; Patrick Chain; Alison Cowie; Ronald W. Davis; Stéphane Dréano; Nancy A. Federspiel; Robert F. Fisher; Stéphanie Gloux; Thérèse Godrie; André Goffeau; Brian Golding; Jérôme Gouzy; Mani Gurjal; Ismael Hernández-Lucas; Andrea Hong
Genes & Development | 1992
Ji-Hou Xin; Alison Cowie; Paul Lachance; John A. Hassell
Biochimica et Biophysica Acta | 1992
Dylan R. Edwards; Hélène Rocheleau; Renu R. Sharma; Wills Aj; Alison Cowie; John A. Hassell; John K. Heath