Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison H. Harrill is active.

Publication


Featured researches published by Alison H. Harrill.


Toxicological Sciences | 2009

Population-Based Discovery of Toxicogenomics Biomarkers for Hepatotoxicity Using a Laboratory Strain Diversity Panel

Alison H. Harrill; Pamela K. Ross; Daniel M. Gatti; David W. Threadgill; Ivan Rusyn

Toxicogenomic studies are increasingly used to uncover potential biomarkers of adverse health events, enrich chemical risk assessment, and to facilitate proper identification and treatment of persons susceptible to toxicity. Current approaches to biomarker discovery through gene expression profiling usually utilize a single or few strains of rodents, limiting the ability to detect biomarkers that may represent the wide range of toxicity responses typically observed in genetically heterogeneous human populations. To enhance the utility of animal models to detect response biomarkers for genetically diverse populations, we used a laboratory mouse strain diversity panel. Specifically, mice from 36 inbred strains derived from Mus mus musculus, Mus mus castaneous, and Mus mus domesticus origins were treated with a model hepatotoxic agent, acetaminophen (300 mg/kg, ig). Gene expression profiling was performed on liver tissue collected at 24 h after dosing. We identified 26 population-wide biomarkers of response to acetaminophen hepatotoxicity in which the changes in gene expression were significant across treatment and liver necrosis score but not significant for individual mouse strains. Importantly, most of these biomarker genes are part of the intracellular signaling involved in hepatocyte death and include genes previously associated with acetaminophen-induced hepatotoxicity, such as cyclin-dependent kinase inhibitor 1A (p21) and interleukin 6 signal transducer (Il6st), and genes not previously associated with acetaminophen, such as oncostatin M receptor (Osmr) and MLX interacting protein like (Mlxipl). Our data demonstrate that a multistrain approach may provide utility for understanding genotype-independent toxicity responses and facilitate identification of novel targets of therapeutic intervention.


Journal of Pharmacokinetics and Pharmacodynamics | 2012

In vitro to in vivo extrapolation and species response comparisons for drug-induced liver injury (DILI) using DILIsym™: a mechanistic, mathematical model of DILI

Brett A. Howell; Yuching Yang; Rukmini Kumar; Jeffrey L. Woodhead; Alison H. Harrill; Harvey J. Clewell; Melvin E. Andersen; Scott Q. Siler; Paul B. Watkins

Drug-induced liver injury (DILI) is not only a major concern for all patients requiring drug therapy, but also for the pharmaceutical industry. Many new in vitro assays and pre-clinical animal models are being developed to help screen compounds for the potential to cause DILI. This study demonstrates that mechanistic, mathematical modeling offers a method for interpreting and extrapolating results. The DILIsym™ model (version 1A), a mathematical representation of DILI, was combined with in vitro data for the model hepatotoxicant methapyrilene (MP) to carry out an in vitro to in vivo extrapolation. In addition, simulations comparing DILI responses across species illustrated how modeling can aid in selecting the most appropriate pre-clinical species for safety testing results relevant to humans. The parameter inputs used to predict DILI for MP were restricted to in vitro inputs solely related to ADME (absorption, distribution, metabolism, elimination) processes. MP toxicity was correctly predicted to occur in rats, but was not apparent in the simulations for humans and mice (consistent with literature). When the hepatotoxicity of MP and acetaminophen (APAP) was compared across rats, mice, and humans at an equivalent dose, the species most susceptible to APAP was not susceptible to MP, and vice versa. Furthermore, consideration of variability in simulated population samples (SimPops™) provided confidence in the predictions and allowed examination of the biological parameters most predictive of outcome. Differences in model sensitivity to the parameters were related to species differences, but the severity of DILI for each drug/species combination was also an important factor.


Liver International | 2014

Keratin-18 and microRNA-122 complement alanine aminotransferase as novel safety biomarkers for drug-induced liver injury in two human cohorts

Petra Thulin; Gunnar Nordahl; Marcus Gry; Getnet Yimer; Eleni Aklillu; Eyasu Makonnen; Getachew Aderaye; Lars Lindquist; C. Mikael Mattsson; Björn Ekblom; Daniel J. Antoine; B. Kevin Park; Stig Linder; Alison H. Harrill; Paul B. Watkins; Björn Glinghammar

There is a demand for more sensitive, specific and predictive biomarkers for drug‐induced liver injury (DILI) than the gold standard used today, alanine aminotransferase (ALT). The aim of this study was to qualify novel DILI biomarkers (keratin‐18 markers M65/M30, microRNA‐122, glutamate dehydrogenase and alpha‐foetoprotein) in human DILI.


Expert Opinion on Drug Metabolism & Toxicology | 2008

Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity

Alison H. Harrill; Ivan Rusyn

Extensive growth in the field of molecular biology in recent decades has led to the development of new and powerful experimental and computational tools that enable the analysis of complex biological responses to chemical exposure on both a functional and structural genetic level. The ability to profile global responses on a transcriptional level has become a valuable resource in the science of toxicology and attempts are now being made to further understand toxicity mechanisms by incorporating metabolomics and proteomics approaches. In addition, recent progress in understanding the extent of the genetic diversity within and between species allows us to take a fresh look at research on genetic polymorphisms that may influence an individuals susceptibility to toxicity. Whereas new technologies have the potential to make a sizeable impact on our understanding of the mechanisms of toxicity, considerable challenges remain to be addressed, especially with regard to the regulatory acceptance and successful integration of omics data. This review highlights recent advancements in the application of functional and structural genomics techniques to chemical hazard identification and characterization, and to the understanding of the interindividual differences in susceptibility to adverse drug reactions.


Toxicological Sciences | 2012

A Mouse Diversity Panel Approach Reveals the Potential for Clinical Kidney Injury Due to DB289 Not Predicted by Classical Rodent Models

Alison H. Harrill; Kristina D. DeSmet; Kristina K. Wolf; Arlene S. Bridges; J. Scott Eaddy; C. Lisa Kurtz; J. Ed. Hall; Mary F. Paine; Richard R. Tidwell; Paul B. Watkins

DB289 is the first oral drug shown in clinical trials to have efficacy in treating African trypanosomiasis (African sleeping sickness). Mild liver toxicity was noted but was not treatment limiting. However, development of DB289 was terminated when several treated subjects developed severe kidney injury, a liability not predicted from preclinical testing. We tested the hypothesis that the kidney safety liability of DB289 would be detected in a mouse diversity panel (MDP) comprised of 34 genetically diverse inbred mouse strains. MDP mice received 10 days of oral treatment with DB289 or vehicle and classical renal biomarkers blood urea nitrogen (BUN) and serum creatinine (sCr), as well as urine biomarkers of kidney injury were measured. While BUN and sCr remained within reference ranges, marked elevations were observed for kidney injury molecule-1 (KIM-1) in the urine of sensitive mouse strains. KIM-1 elevations were not always coincident with elevations in alanine aminotransferase (ALT), suggesting that renal injury was not linked to hepatic injury. Genome-wide association analyses of KIM-1 elevations indicated that genes participating in cholesterol and lipid biosynthesis and transport, oxidative stress, and cytokine release may play a role in DB289 renal injury. Taken together, the data resulting from this study highlight the utility of using an MDP to predict clinically relevant toxicities, to identify relevant toxicity biomarkers that may translate into the clinic, and to identify potential mechanisms underlying toxicities. In addition, the sensitive mouse strains identified in this study may be useful in screening next-in-class compounds for renal injury.


Toxicological Sciences | 2014

A Systems Biology Approach Utilizing a Mouse Diversity Panel Identifies Genetic Differences Influencing Isoniazid-Induced Microvesicular Steatosis

Rachel J. Church; Hong Wu; Merrie Mosedale; Susan Sumner; Wimal Pathmasiri; Catherine L. Kurtz; Mathew T. Pletcher; John S. Eaddy; Karamjeet Pandher; Monica Singer; Ameesha Batheja; Paul B. Watkins; Karissa Adkins; Alison H. Harrill

Isoniazid (INH), the mainstay therapeutic for tuberculosis infection, has been associated with rare but serious hepatotoxicity in the clinic. However, the mechanisms underlying inter-individual variability in the response to this drug have remained elusive. A genetically diverse mouse population model in combination with a systems biology approach was utilized to identify transcriptional changes, INH-responsive metabolites, and gene variants that contribute to the liver response in genetically sensitive individuals. Sensitive mouse strains developed severe microvesicular steatosis compared with corresponding vehicle control mice following 3 days of oral treatment with INH. Genes involved in mitochondrial dysfunction were enriched among liver transcripts altered with INH treatment. Those associated with INH treatment and susceptibility to INH-induced steatosis in the liver included apolipoprotein A-IV, lysosomal-associated membrane protein 1, and choline phosphotransferase 1. These alterations were accompanied by metabolomic changes including reduced levels of glutathione and the choline metabolites betaine and phosphocholine, suggesting that oxidative stress and reduced lipid export may additionally contribute to INH-induced steatosis. Finally, genome-wide association mapping revealed that polymorphisms in perilipin 2 were linked to increased triglyceride levels following INH treatment, implicating a role for inter-individual differences in lipid packaging in the susceptibility to INH-induced steatosis. Taken together, our data suggest that INH-induced steatosis is caused by not one, but multiple events involving lipid retention in the livers of genetically sensitive individuals. This work also highlights the value of using a mouse diversity panel to investigate drug-induced responses across a diverse population.


PLOS Genetics | 2015

A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2

John P. Didion; Andrew P. Morgan; Amelia M.-F. Clayshulte; Rachel C. McMullan; Liran Yadgary; Petko M. Petkov; Timothy A. Bell; Daniel M. Gatti; James J. Crowley; Kunjie Hua; David L. Aylor; Ling Bai; Mark Calaway; Elissa J. Chesler; John E. French; Thomas R. Geiger; Terry J. Gooch; Theodore Garland; Alison H. Harrill; Kent W. Hunter; Leonard McMillan; Matt Holt; Darla R. Miller; Deborah A. O'Brien; Kenneth Paigen; Wenqi Pan; Lucy B. Rowe; Ginger D. Shaw; Petr Simecek; Patrick F. Sullivan

Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 – 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.


BMC Clinical Pharmacology | 2014

Benign elevations in serum aminotransferases and biomarkers of hepatotoxicity in healthy volunteers treated with cholestyramine

Rohit Singhal; Alison H. Harrill; Francoise Menguy-Vacheron; Zaid Jayyosi; Hadj Benzerdjeb; Paul B. Watkins

BackgroundThere are currently no serum biomarkers capable of distinguishing elevations in serum alanine aminotransferase (ALT) that portend serious liver injury potential from benign elevations such as those occurring during cholestyramine treatment. The aim of the research was to test the hypothesis that newly proposed biomarkers of hepatotoxicity would not significantly rise in serum during elevations in serum ALT associated with cholestyramine treatment, which has never been associated with clinically relevant liver injury.MethodsIn a double-blind placebo-controlled trial, cholestyramine (8g) was administered for 11 days to healthy adult volunteers. Serum from subjects with elevations in alanine aminotransferase (ALT) exceeding three-fold the upper limit of normal (ULN) were utilized for biomarker quantification.ResultsIn 11 of 67 subjects, cholestyramine treatment resulted in ALT elevation by >3x ULN (mean 6.9 fold; range 3–28 fold). In these 11 subjects, there was a 22.4-fold mean increase in serum levels of miR-122 relative to baseline, supporting a liver origin of the serum ALT. Significant elevations were noted in mean levels of necrosis biomarkers sorbitol dehydrogenase (8.1 fold), cytokeratin 18 (2.1 fold) and HMGB1 (1.7 fold). Caspase-cleaved cytokeratin 18, a biomarker of apoptosis was also significantly elevated (1.7 fold). A rise in glutamate dehydrogenase (7.3 fold) may support mitochondrial dysfunction.ConclusionAll toxicity biomarkers measured in this study were elevated along with ALT, confirming the liver origin and reflecting both hepatocyte necrosis and apoptosis. Since cholestyramine treatment has no clinical liver safety concerns, we conclude that interpretation of the biomarkers studied may not be straightforward in the context of assessing liver safety of new drugs.


Toxicological Sciences | 2016

Beyond miR-122: Identification of microRNA alterations in blood during a time course of hepatobiliary injury and biliary hyperplasia in rats

Rachel J. Church; Monicah A. Otieno; James Eric McDuffie; Bhanu Singh; Manisha Sonee; Le Roy Hall; Paul B. Watkins; Heidrun Ellinger-Ziegelbauer; Alison H. Harrill

Identification of circulating microRNAs for the diagnosis of liver injury and as an indicator of underlying pathology has been the subject of recent investigations. While several studies have been conducted, with particular emphasis on miR-122, the timing of miRNA release into the circulation and anchoring to tissue pathology has not been systematically evaluated. In this study, miRNA profiling was conducted over a time course of hepatobiliary injury and repair using alpha-naphthylisothiocyanate (ANIT) and a proprietary compound, FP004BA. ANIT administration (50 mg/kg) to rats caused significant biliary epithelial cell and hepatocellular necrosis between 24 and 72 h, followed by resolution and progression to biliary hyperplasia by 120 h which was associated with miRNA release into the blood. FP004BA (100 mg/kg) was used to confirm associations of miRNA along a time course with similar hepatic pathology to ANIT. Treatment with ANIT or FP004BA resulted in significant alterations of overlapping miRNAs during the early and peak injury phases. In addition to well-characterized liver injury markers miR-122-5p and miR-192-5p, multiple members of the 200 family and the 101 family along with miR-802-5p and miR-30d-5p were consistently elevated during hepatobiliary injury caused by both toxicants, suggesting that these species may be potential biomarker candidates for hepatobiliary injury. After 14 days of dosing with 4BA, miR-182-5p remained elevated-while miR-122-5p and miR-192-5p had returned to baseline-suggesting that miR-182-5p may have added utility to monitor for hepatobiliary injury in the repair phases when there remains histological evidence of ongoing cellular injury.


Mammalian Genome | 2009

Replication and narrowing of gene expression quantitative trait loci using inbred mice

Daniel M. Gatti; Alison H. Harrill; Fred A. Wright; David W. Threadgill; Ivan Rusyn

Gene expression quantitative trait locus (eQTL) mapping has become a powerful tool in systems biology. While many authors have made important discoveries using this approach, one persistent challenge in eQTL studies is the selection of loci and genes that should receive further biological investigation. In this study we compared eQTL generated from gene expression profiling in the livers of two panels of mouse strains: 41 BXD recombinant inbred and 36 Mouse Diversity Panel (MDP) strains. Cis-eQTL, loci in which the transcript and its maximum QTL are colocated, have been shown to be more reproducible than trans-eQTL, which are not colocated with the transcript. We observed that between 9.9 and 12.1% of cis-eQTL and between 2.0 and 12.6% of trans-eQTL replicated between the two panels depending on the degree of statistical stringency. Notably, a significant eQTL hotspot on distal chromosome 12 observed in the BXD panel was reproduced in the MDP. Furthermore, the shorter linkage disequilibrium in the MDP strains allowed us to considerably narrow the locus and limit the number of candidate genes to a cluster of Serpin genes, which code for extracellular proteases. We conclude that this strategy has some utility in increasing confidence and resolution in eQTL mapping studies; however, due to the high false-positive rate in the MDP, eQTL mapping in inbred strains is best carried out in combination with an eQTL linkage study.

Collaboration


Dive into the Alison H. Harrill's collaboration.

Top Co-Authors

Avatar

Daniel M. Gatti

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Paul B. Watkins

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

John E. French

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amelia M.-F. Clayshulte

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Morgan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Darla R. Miller

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

David L. Aylor

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Deborah A. O'Brien

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elissa J. Chesler

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Ginger D. Shaw

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge