Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison J. Cox is active.

Publication


Featured researches published by Alison J. Cox.


Hypertension | 2009

The (Pro)Renin Receptor Site-Specific and Functional Linkage to the Vacuolar H+-ATPase in the Kidney

Andrew Advani; Darren J. Kelly; Alison J. Cox; Kathryn White; Suzanne L. Advani; Kerri Thai; Kim A. Connelly; Darren Yuen; Judy Trogadis; Andrew M. Herzenberg; Michael A. Kuliszewski; Howard Leong-Poi; Richard E. Gilbert

The (pro)renin receptor ([P]RR) is a transmembrane protein that binds both renin and prorenin with high affinity, increasing the catalytic cleavage of angiotensinogen and signaling intracellularly through mitogen-activated protein kinase activation. Although initially reported as having no homology with any known membrane protein, other studies have suggested that the (P)RR is an accessory protein, named ATP6ap2, that associates with the vacuolar H+-ATPase, a key mediator of final urinary acidification. Using in situ hybridization, immunohistochemistry, and electron microscopy, together with serial sections stained with nephron segment–specific markers, we found that (P)RR mRNA and protein were predominantly expressed in collecting ducts and in the distal nephron. Within collecting ducts, the (P)RR was most abundant in microvilli at the apical surface of A-type intercalated cells. Dual-staining immunofluorescence demonstrated colocalization of the (P)RR with the B1/2 subunit of the vacuolar H+-ATPase, the ion exchanger that secretes H+ ions into the urinary space and that associates with an accessory subunit homologous to the (P)RR. In collecting duct/distal tubule lineage Madin-Darby canine kidney cells, extracellular signal–regulated kinase 1/2 phosphorylation, induced by either renin or prorenin, was attenuated by the selective vacuolar H+-ATPase inhibitor bafilomycin. The predominant expression of the (P)RR at the apex of acid-secreting cells in the collecting duct, along with its colocalization and homology with an accessory protein of the vacuolar H+-ATPase, suggests that the (P)RR may function primarily in distal nephron H+ transport, recently noted to be, at least in part, an angiotensin II–dependent phenomenon.


Journal of Clinical Investigation | 1997

Vascular hypertrophy in experimental diabetes. Role of advanced glycation end products.

Jonathan R. Rumble; Mark E. Cooper; T Soulis; Alison J. Cox; Leonard L. Wu; Sherif Youssef; Mariusz Jasik; George Jerums; Richard E. Gilbert

The accelerated formation of advanced glycation end products (AGEs) and the overexpression of transforming growth factor beta (TGF-beta) have both been implicated in the pathogenesis of diabetic microvascular and macrovascular complications. Previous studies in our laboratory have demonstrated that the vascular changes in diabetes include hypertrophy of the mesenteric vasculature. To examine the role of AGEs in this process, streptozotocin-induced diabetic rats and control animals were randomized to receive aminoguanidine, an inhibitor of AGE formation, or no treatment. Animals were studied at 7 d, 3 wk, and 8 mo after induction of diabetes. When compared with control animals, diabetes was associated with an increase in mesenteric vascular weight and an increase in media wall/lumen area. By Northern analysis, TGF-beta1 gene expression was increased 100-150% (P < 0.01) and alpha1 (IV) collagen gene expression was similarly elevated to 30-110% compared to controls (P < 0.05). AGEs and extracellular matrix were present in abundance in diabetic but not in control vessels. Treatment of diabetic rats with aminoguanidine resulted in significant amelioration of the described pathological changes including overexpression of TGF-beta1 and alpha1 (IV) collagen. These data implicate the formation of AGEs in TGF-beta overexpression and tissue changes which accompany the diabetic state.


Diabetologia | 2000

Angiotensin converting enzyme inhibition reduces retinal overexpression of vascular endothelial growth factor and hyperpermeability in experimental diabetes.

Richard E. Gilbert; Darren J. Kelly; Alison J. Cox; Jennifer L. Wilkinson-Berka; Jonathan R. Rumble; Tanya M. Osicka; Sianna Panagiotopoulos; V. Lee; Elke Hendrich; George Jerums; Mark E. Cooper

Aims/hypothesis. Angiotensin converting enzyme (ACE) inhibition has been recently suggested to have retinoprotective actions in diabetic patients but the mechanism of this effect is not known. In vitro, angiotensin II stimulates expression of vascular endothelial growth factor (VEGF), a permeability-inducing and endothelial cell specific angiogenic factor which has been implicated in the pathogenesis of diabetic retinopathy in humans and in experimental animals. We sought to determine the effects of ACE inhibition on retinal VEGF expression and permeability in experimental diabetic retinopathy.¶Methods. Streptozotocin-induced diabetic rats and control animals were assigned at random to receive ACE inhibitor treatment or vehicle. At 24 weeks the retinal VEGF protein gene expression was assessed by northern blot analysis and in situ hybridisation. Retinal permeability to albumin was measured using a double isotope technique.¶Results. Experimental diabetes was associated with cell specific two to fourfold increase in retinal VEGF protein gene expression (p < 0.01) and a 2-fold increase in retinal vascular permeability to albumin (p < 0.01). The localization of VEGF expression in the retina was not altered in animals with experimental diabetes. Angiotensin converting enzyme inhibitor treatment of diabetic rats reduced diabetes-associated changes in VEGF gene expression and vascular permeability.¶Conclusion/interpretation. These findings implicate the renin-angiotensin system in the VEGF overexpression and hyperpermeability which accompany diabetic retinopathy and provide a potential mechanism for the beneficial effects of ACE inhibition in diabetic retinal disease. [Diabetologia (2000) 43: 1360–1367]


American Journal of Pathology | 1999

Pathological Expression of Renin and Angiotensin II in the Renal Tubule after Subtotal Nephrectomy: Implications for the Pathogenesis of Tubulointerstitial Fibrosis

Richard E. Gilbert; Leonard L. Wu; Darren J. Kelly; Alison J. Cox; Jennifer L. Wilkinson-Berka; Colin I. Johnston; Mark E. Cooper

The finding that the systemic renin-angiotensin system (RAS) is not activated in most types of chronic renal disease has led to the suggestion that a local, intrarenal RAS may be an important determinant in the relentless progression of renal disease. Therefore, cell specific changes in various components of the RAS in response to renal mass reduction and angiotensin converting enzyme (ACE) inhibition were examined. Thirty Sprague-Dawley rats were randomly assigned to sham surgery, subtotal nephrectomy (STNx) alone or STNx treated with the ACE inhibitor, perindopril, and sacrificed after 12 weeks. In sham rats, renin mRNA and protein were only present in the juxtaglomerular apparatus. In contrast, in STNx kidneys, renin and angiotensin II expression were noted predominantly in renal tubular epithelial cells in association with overexpression of the prosclerotic cytokine, transforming growth factor-beta1 (TGF-beta1). In perindopril-treated STNx rats expression of renin and TGF-beta1 were similar to control animals. These finding indicate that following renal mass reduction there is pathological tubular expression of various components of the RAS. Furthermore, in contrast to the juxtaglomerular apparatus, tubular renin expression was reduced with ACE inhibition. These changes within the intrarenal RAS may be pathogenetically linked to the development of tubulointerstitial injury.


Journal of Hepatology | 2001

Effect of angiotensin II type 1 receptor blockade on experimental hepatic fibrogenesis.

Georgina Paizis; Richard E. Gilbert; Mark E. Cooper; Padma Murthi; Josefa M. Schembri; Leonard L. Wu; Jonathan R. Rumble; Darren J. Kelly; Christos Tikellis; Alison J. Cox; Richard A. Smallwood; Peter W Angus

BACKGROUND/AIMS The aim of this study was to investigate whether in the liver, as in other tissues, there is evidence that angiotensin II, acting via the angiotensin II type 1 receptor (AT1-R), plays a role in fibrogenesis. METHODS Sprague-Dawley rats were divided into three groups; sham, bile duct ligated (BDL) and BDL + AT1-R antagonist, irbesartan. Real time RT-PCR was utilised to assess gene expression of the AT1 receptor, TGF-beta1 and alpha1 (I) collagen in the liver. TGF-beta1 and alpha1 (I) collagen mRNA expression and localisation were also assessed by in situ hybridisation. TGF-beta1 activity was assessed by using the TGF-beta inducible gene product betaig-h3. Fibrosis was assessed by the Knodell scoring system, tissue hydroxyproline content and picro-sirius red staining. RESULTS Real time RT-PCR revealed that there was a 6-fold up-regulation in AT1 receptor expression in BDL animals compared with shams. This was associated with marked increases in TGF-beta1, betaig-h3 and alpha1 (I) collagen gene expression which were attenuated by AT1-RA treatment. However, AT1-RA therapy produced no significant change in liver histology or hydroxyproline content. CONCLUSIONS These results suggest that in the liver angiotensin II may play an important role in the fibrogenic response to injury. However, whether treatment with an AT1-RA will be of therapeutic benefit remains to be determined.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions

Andrew Advani; Darren J. Kelly; Suzanne L. Advani; Alison J. Cox; Kerri Thai; Yuan Zhang; Kathryn White; Renae M. Gow; Sally M. Marshall; Brent M. Steer; Philip A. Marsden; P. Elizabeth Rakoczy; Richard E. Gilbert

Inhibiting the actions of VEGF is a new therapeutic paradigm in cancer management with antiangiogenic therapy also under intensive investigation in a range of nonmalignant diseases characterized by pathological angiogenesis. However, the effects of VEGF inhibition on organs that constitutively express it in adulthood, such as the kidney, are mostly unknown. Accordingly, we examined the effect of VEGF inhibition on renal structure and function under physiological conditions and in the setting of the common renal stressors: hypertension and activation of the renin–angiotensin system. When compared with normotensive Sprague–Dawley (SD) rats, glomerular VEGF mRNA was increased 2-fold in transgenic (mRen-2)27 rats that overexpress renin with spontaneously hypertensive rat (SHR) kidneys showing VEGF expression levels that were intermediate between them. Administration of either an orally active inhibitor of the type 2 VEGF receptor (VEGFR-2) tyrosine kinase or a VEGF neutralizing antibody to TGR(mRen-2)27 rats resulted in loss of glomerular endothelial cells and transformation to a malignant hypertensive phenotype with severe glomerulosclerosis. VEGFR-2 kinase inhibition treatment was well tolerated in SDs and SHRs; although even in these animals there was detectable endothelial cell loss and rise in albuminuria. Mild mesangial expansion was also noted in hypertensive SHR, but not in SD rats. These studies illustrate: (i) VEGF has a role in the maintenance of glomerular endothelial integrity under physiological circumstances, (ii) glomerular VEGF is increased in response to hypertension and activation of the renin–angiotensin system, and (iii) VEGF signaling plays a protective role in the setting of these renal stressors.


Diabetologia | 2002

Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases.

S. McLennan; Darren J. Kelly; Alison J. Cox; Zemin Cao; J. G. Lyons; Dennis K. Yue; Richard E. Gilbert

Aims/hypothesisExtracellular matrix accumulation is thought to be involved in the pathogenesis of diabetic nephropathy. Increased matrix synthesis has been well documented but the effects of diabetes on degradative pathways, particularly in the in vivo setting, have not been fully explored. Furthermore, the effect of renoprotective therapies on matrix accumulation through these pathways has not been examined. We investigated the degradative pathway of type IV collagen and the effects of ACE inhibition in experimental diabetic nephropathy. MethodsDiabetes was induced in 16 rats by administrating streptozocin; 8 of the diabetic rats were allocated at random to receive the ACE inhibitor perindopril (2 mg/l) in their drinking water and 8 age and weight matched rats served as controls. Gene expression of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) was measured by RT-PCR and type IV collagen content by immunohistochemistry. MMP activities were determined by degradation of a radiolabelled substrate and by zymography. ResultsSix months of diabetes was associated with a decrease in mRNA and enzymatic activity of MMP-9 (21 % and 51 % respectively, p < 0.05 vs control) and a 51 % increase in TIMP-1 mRNA (p < 0.05 vs control). By contrast, MMP-2 mRNA was increased but its activity decreased (43 % and 43 % respectively, p < 0.05 vs control). Total degradative capacity of kidney tissue from diabetic rats was also lower (Control: 48 ± 7 %, Diabetic: 33 ± 6 %, p < 0.05). Activation of latent MMPs with amino-phenylmercuric acetate increased matrix degradation by two-fold. However the relative decrease associated with experimental diabetes still remained. All diabetes-associated changes in MMP and TIMP mRNA and activities were attenuated by perindopril treatment in association with reduced type IV collagen accumulation. Conclusions/interpretationThese results indicate that the impairment of matrix degradation contributes to matrix accumulation in diabetic nephropathy and that the beneficial effects of ACE inhibition could in part be mediated by modulation of changes in matrix degradative pathways. [Diabetologia (2002) 45: 268–275]


Digestion | 1990

Insulin-like growth factors and the developing and mature rat small intestine: receptors and biological actions.

G.P. Young; T.M. Taranto; H.A. Jonas; Alison J. Cox; Annette Hogg; George A. Werther

To determine if insulin-like growth factor-I (IGF-I) or multiplication stimulating activity (MSA, rat IGF-II) might directly influence small intestinal epithelium, we studied the distribution of IGF binding sites during development of the rat intestine. Cell membranes from suckling rat mucosa bound 2-6 times as much 125I-IGF-I and 3-5 times as much 125I-MSA as did adult membranes. Isolated villus cells from suckling and adult rats specifically bound both IGFs. IGF-I binding tended to remain high during suckling, whereas MSA binding fell progressively from the early suckling period. Competitive displacement studies with insulin, IGF-I and MSA demonstrated the presence of type-I and type-II IGF receptors. In vitro autoradiography of 125I-IGF-I binding sites in adult and suckling rat jejunum showed highest binding in the submucosa with extensions up into the lamina propria. Immunocytochemical localization of type-II receptors showed highest density in villus epithelium and vessel walls. Administration of MSA by oral and IGF-I by oral and parenteral routes (1 microgram/day for 6 days) to suckling rats stimulated jejunal brush border enzymes, but not intestinal growth. Developmental changes in receptor density and effects on brush border enzymes suggest a specific role for IGFs in post-natal development of the rat intestine.


Journal of The American Society of Nephrology | 2009

Expression, Localization, and Function of the Thioredoxin System in Diabetic Nephropathy

Andrew Advani; Richard E. Gilbert; Kerri Thai; Renae M. Gow; Robyn Langham; Alison J. Cox; Kim A. Connelly; Yuan Zhang; Andrew M. Herzenberg; Per K. Christensen; Carol A. Pollock; Weier Qi; Sih Min Tan; Hans Henrik Parving; Darren J. Kelly

Excessive reactive oxygen species play a key role in the pathogenesis of diabetic nephropathy, but to what extent these result from increased generation, impaired antioxidant systems, or both is incompletely understood. Here, we report the expression, localization, and activity of the antioxidant thioredoxin and its endogenous inhibitor thioredoxin interacting protein (TxnIP) in vivo and in vitro. In normal human and rat kidneys, expression of TxnIP mRNA and protein was most abundant in the glomeruli and distal nephron (distal convoluted tubule and collecting ducts). In contrast, thioredoxin mRNA and protein localized to the renal cortex, particularly within the proximal tubules and to a lesser extent in the distal nephron. Induction of diabetes in rats increased expression of TxnIP but not thioredoxin mRNA. Kidneys from patients with diabetic nephropathy had significantly higher levels of TxnIP than control kidneys, but thioredoxin expression did not differ. In vitro, high glucose increased TxnIP expression in mesangial, NRK (proximal tubule), and MDCK (distal tubule/collecting duct) cells, and decreased the expression of thioredoxin in mesangial and MDCK cells. Knockdown of TxnIP with small interference RNA suggested that TxnIP mediates the glucose-induced impairment of thioredoxin activity. Knockdown of TxnIP also abrogated both glucose-induced 3H-proline incorporation (a marker of collagen production) and oxidative stress. Taken together, these findings suggest that impaired thiol reductive capacity contributes to the generation of reactive oxygen species in diabetes in a site- and cell-specific manner.


Hypertension | 2000

Blockade of the Renin-Angiotensin and Endothelin Systems on Progressive Renal Injury

Zemin Cao; Mark E. Cooper; Leonard L. Wu; Alison J. Cox; Karin Jandeleit-Dahm; Darren J. Kelly; Richard E. Gilbert

The renin-angiotensin system (RAS) and endothelin system may both play a role in the pathogenesis of progressive renal injury. The aims of the present study were 3-fold: first, to explore the possible benefits of dual blockade of the RAS with an ACE inhibitor and an angiotensin type 1(AT1) receptor antagonist; second, to examine the relative efficacy of endothelin A receptor antagonism (ETA-RA) compared with combined endothelin A/B receptor antagonism (ETA/B-RA); and third, to assess whether interruption of both RAS and endothelin system had any advantages over single-system blockade. Subtotally nephrectomized rats were studied as a model of progressive renal injury and randomly assigned to one of the following treatments for 12 weeks: perindopril (ACE inhibitor), irbesartan (AT1 receptor antagonist), BMS193884 (ETA-RA), bosentan (ETA/B-RA), and a combination of irbesartan with either perindopril or BMS193884. Treatment with irbesartan or perindopril was associated with an improved glomerular filtration rate and reductions in blood pressure, urinary protein excretion, glomerulosclerosis, and tubular injury in association with reduced gene expression of transforming growth factor-&bgr;1 and matrix protein type IV collagen. The combination of irbesartan with perindopril was associated with further reductions in blood pressure and urinary protein excretion. No beneficial effects of either BMS193884 or bosentan were noted. Furthermore, the addition of BMS193884 to irbesartan did not confer any additional benefits. These findings suggest that the RAS but not the endothelin system is a major mediator of progressive renal injury after renal mass reduction and that the combination of an AT1 receptor antagonist with an ACE inhibitor may have advantages over the single agent of RAS blocker treatment.

Collaboration


Dive into the Alison J. Cox's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren J. Kelly

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Zhang

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerri Thai

St. Michael's Hospital

View shared research outputs
Top Co-Authors

Avatar

Yuan Zhang

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renae M. Gow

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar

Robyn Langham

St. Vincent's Health System

View shared research outputs
Researchain Logo
Decentralizing Knowledge