Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison Jo-Anne Woolford is active.

Publication


Featured researches published by Alison Jo-Anne Woolford.


Journal of Medicinal Chemistry | 2008

Identification of N-(4-Piperidinyl)-4-(2,6-Dichlorobenzoylamino)-1H-Pyrazole-3-Carboxamide (at7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design.

Paul G. Wyatt; Andrew James Woodhead; Berdini; J.A Boulstridge; Maria Grazia Carr; David M. Cross; D.J Davis; Lindsay A. Devine; Theresa Rachel Early; Ruth Feltell; E.J Lewis; Rachel McMenamin; Eva Figueroa Navarro; Michael Alistair O'brien; Marc O'Reilly; Matthias Reule; G Saxty; L.C.A Seavers; D Smith; M.S Squires; G Trewartha; M.T Walker; Alison Jo-Anne Woolford

The application of fragment-based screening techniques to cyclin dependent kinase 2 (CDK2) identified multiple (>30) efficient, synthetically tractable small molecule hits for further optimization. Structure-based design approaches led to the identification of multiple lead series, which retained the key interactions of the initial binding fragments and additionally explored other areas of the ATP binding site. The majority of this paper details the structure-guided optimization of indazole (6) using information gained from multiple ligand-CDK2 cocrystal structures. Identification of key binding features for this class of compounds resulted in a series of molecules with low nM affinity for CDK2. Optimisation of cellular activity and characterization of pharmacokinetic properties led to the identification of 33 (AT7519), which is currently being evaluated in clinical trials for the treatment of human cancers.


Journal of Medicinal Chemistry | 2010

Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design

Andrew James Woodhead; Hayley Angove; Maria Grazia Carr; Gianni Chessari; Miles Congreve; Joseph E. Coyle; Jose Cosme; Brent Graham; Philip J. Day; Robert Downham; Lynsey Fazal; Ruth Feltell; Eva Figueroa; Martyn Frederickson; Jonathan Lewis; Rachel McMenamin; Christopher W. Murray; M. Alistair O’Brien; Lina Parra; Sahil Patel; Theresa Rachel Phillips; David C. Rees; Sharna J. Rich; Donna-Michelle Smith; Gary Trewartha; Mladen Vinkovic; Brian Williams; Alison Jo-Anne Woolford

Inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) are currently generating significant interest in clinical development as potential treatments for cancer. In a preceding publication (DOI: 10.1021/jm100059d ) we describe Astexs approach to screening fragments against Hsp90 and the subsequent optimization of two hits into leads with inhibitory activities in the low nanomolar range. This paper describes the structure guided optimization of the 2,4-dihydroxybenzamide lead molecule 1 and details some of the drug discovery strategies employed in the identification of AT13387 (35), which has progressed through preclinical development and is currently being tested in man.


Journal of Medicinal Chemistry | 2010

Fragment-Based Drug Discovery Applied to Hsp90. Discovery of Two Lead Series with High Ligand Efficiency.

Christopher W. Murray; Maria Grazia Carr; Owen Callaghan; Gianni Chessari; Miles Congreve; Suzanna Cowan; Joseph E. Coyle; Robert Downham; E Figueroa; Martyn Frederickson; Brent Graham; Rachel McMenamin; Michael Alistair O'brien; Sahil Patel; Theresa Rachel Phillips; Glyn Williams; Andrew James Woodhead; Alison Jo-Anne Woolford

Inhibitors of the chaperone Hsp90 are potentially useful as chemotherapeutic agents in cancer. This paper describes an application of fragment screening to Hsp90 using a combination of NMR and high throughput X-ray crystallography. The screening identified an aminopyrimidine with affinity in the high micromolar range and subsequent structure-based design allowed its optimization into a low nanomolar series with good ligand efficiency. A phenolic chemotype was also identified in fragment screening and was found to bind with affinity close to 1 mM. This fragment was optimized using structure based design into a resorcinol lead which has subnanomolar affinity for Hsp90, excellent cell potency, and good ligand efficiency. This fragment to lead campaign improved affinity for Hsp90 by over 1,000,000-fold with the addition of only six heavy atoms. The companion paper (DOI: 10.1021/jm100060b) describes how the resorcinol lead was optimized into a compound that is now in clinical trials for the treatment of cancer.


Journal of Medicinal Chemistry | 2015

Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP.

Gianni Chessari; Ildiko Maria Buck; James E. H. Day; Philip J. Day; Aman Iqbal; Christopher Norbert Johnson; Edward J. Lewis; Vanessa Martins; Darcey Miller; Michael Reader; David C. Rees; Sharna J. Rich; Emiliano Tamanini; Marc Vitorino; George Ward; Pamela A. Williams; Glyn Williams; Nicola E. Wilsher; Alison Jo-Anne Woolford

Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis and pro-survival signaling pathways whose deregulation is often associated with tumor genesis and tumor growth. IAPs have been proposed as targets for anticancer therapy, and a number of peptidomimetic IAP antagonists have entered clinical trials. Using our fragment-based screening approach, we identified nonpeptidic fragments binding with millimolar affinities to both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). Structure-based hit optimization together with an analysis of protein-ligand electrostatic potential complementarity allowed us to significantly increase binding affinity of the starting hits. Subsequent optimization gave a potent nonalanine IAP antagonist structurally distinct from all IAP antagonists previously reported. The lead compound had activity in cell-based assays and in a mouse xenograft efficacy model and represents a highly promising start point for further optimization.


ACS Medicinal Chemistry Letters | 2012

Fragment-Based Discovery of 7-Azabenzimidazoles as Potent, Highly Selective, and Orally Active CDK4/6 Inhibitors

Young Shin Cho; Hayley Angove; Christopher Thomas Brain; Christine Hiu-Tung Chen; Hong Cheng; Robert Cheng; Rajiv Chopra; Kristy Chung; Miles Congreve; Claudio Dagostin; Deborah J. Davis; Ruth Feltell; John William Giraldes; Steven Douglas Hiscock; Sunkyu Kim; Steven Kovats; Bharat Lagu; Kim Lewry; Alice Loo; Yipin Lu; Michael Luzzio; Wiesia Maniara; Rachel McMenamin; Paul N. Mortenson; Rajdeep Kaur Benning; Marc O'Reilly; David C. Rees; Junqing Shen; Troy Smith; Yaping Wang

Herein, we describe the discovery of potent and highly selective inhibitors of both CDK4 and CDK6 via structure-guided optimization of a fragment-based screening hit. CDK6 X-ray crystallography and pharmacokinetic data steered efforts in identifying compound 6, which showed >1000-fold selectivity for CDK4 over CDKs 1 and 2 in an enzymatic assay. Furthermore, 6 demonstrated in vivo inhibition of pRb-phosphorylation and oral efficacy in a Jeko-1 mouse xenograft model.


Journal of Medicinal Chemistry | 2016

Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered through X-ray Fragment Screening.

Alison Jo-Anne Woolford; Joseph E. Pero; Sridhar Aravapalli; Valerio Berdini; Joseph E. Coyle; Philip J. Day; Andrew M. Dodson; Pascal Grondin; Finn P. Holding; Lydia Y. W. Lee; Peng Li; Eric S. Manas; Joseph P. Marino; Agnes C. L. Martin; Brent W. Mccleland; Rachel McMenamin; Christopher W. Murray; Christopher E. Neipp; Lee W. Page; Vipulkumar Kantibhai Patel; Florent Potvain; Sharna J. Rich; Ralph A. Rivero; Kirsten S. Smith; Donald O. Somers; Lionel Trottet; Ranganadh Velagaleti; Glyn Williams; Ren Xie

Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues.


Cancer Research | 2013

Abstract 2944: AT-IAP, a dual cIAP1 and XIAP antagonist with oral antitumor activity in melanoma models.

Gianni Chessari; Ahn Maria; Ildiko Maria Buck; Elisabetta Chiarparin; Joe Coyle; James E. H. Day; Martyn Frederickson; Charlotte Mary Griffiths-Jones; Keisha Hearn; Steven Howard; Tom D. Heightman; Petra Hillmann; Aman Iqbal; Christopher N. Johnson; Jon Lewis; Vanessa Martins; Joanne M. Munck; Mike Reader; Lee Page; Anna Hopkins; Alessia Millemaggi; Caroline Richardson; Gordon Saxty; Tomoko Smyth; Emiliano Tamanini; Neil Thompson; George Ward; Glyn Williams; Pamela A. Williams; Nicola E. Wilsher

Melanoma is a highly aggressive malignancy with an exceptional ability to develop resistance and no curative therapy is available for patients with metastatic disease. Inhibitor of apoptosis proteins (IAP) play a key role in preventing cell death by apoptosis. In normal cell, IAPs are highly regulated by endogenous antagonists (e.g. SMAC) but in melanoma cell lines and in patient samples expression levels of IAPs are generally high and depleting IAPs by siRNA tended to reduce cell viability, with XIAP reduction being the most efficient [1]. Small molecule IAP antagonists have the ability to switch IAP-controlled pro-survival pathways towards apoptosis and cell death. Recent evidence suggests that a true dual antagonist of both cIAP1 and XIAP will promote an effective apoptotic response through generation of death-inducing ripoptosome complexes, with resultant caspase activation [2, 3]. We have used our fragment-based drug discovery technology PyramidTM to derive a non-peptidomimetic IAP antagonist, AT-IAP, which does not have an alanine warhead and has nanomolar cellular potency for both XIAP and cIAP1. Initial pharmacokinetic and pharmacodynamic modeling of AT-IAP in mice bearing the MDA-MB-231 cell line indicated that daily oral dosing of AT-IAP at 30 mg/kg ensures high concentrations of compound in tumor and plasma over a 24 h period with resultant inhibition of both XIAP and cIAP1 and induction of apoptosis markers (cleaved PARP and cleaved caspase-3). In this paper, we describe the characterization of AT-IAP in melanoma models. An in vitro cell line proliferation screen demonstrated that 36% of melanoma cell lines exhibited enhanced sensitivity to AT-IAP, which was improved on addition of exogenous 1 ng/ml TNF-α (92% of cell lines were sensitive to AT-IAP + TNF-α). Sensitivity of melanoma cells to AT-IAP has also been confirmed in a panel of 20 primary melanoma tumors in colony formation assays set up in the presence and absence of added TNF-α. Finally, a set of biomarkers has been identified and used to predict single agent activity of AT-IAP in a range of melanoma cell line and patient derived xenograft models. [1] Engesaeter et al., Cancer Biology & Therapy, 2011, 12 (1), 47 [2] Ndubaku et al., ACS Chem Biol., 2009, 4 (7), 557 [3] Meier, P., Nat Rev. Cancer, 2010, 10 (8), 561 Citation Format: Gianni Chessari, Ahn Maria, Ildiko Buck, Elisabetta Chiarparin, Joe Coyle, James Day, Martyn Frederickson, Charlotte Griffiths-Jones, Keisha Hearn, Steven Howard, Tom Heightman, Petra Hillmann, Aman Iqbal, Christopher N. Johnson, Jon Lewis, Vanessa Martins, Joanne Munck, Mike Reader, Lee Page, Anna Hopkins, Alessia Millemaggi, Caroline Richardson, Gordon Saxty, Tomoko Smyth, Emiliano Tamanini, Neil Thompson, George Ward, Glyn Williams, Pamela Williams, Nicola Wilsher, Alison Woolford. AT-IAP, a dual cIAP1 and XIAP antagonist with oral antitumor activity in melanoma models. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 2944. doi:10.1158/1538-7445.AM2013-2944


Journal of Medicinal Chemistry | 2018

Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2.

Tom D. Heightman; Valerio Berdini; Hannah Braithwaite; Ildiko Maria Buck; Megan Cassidy; Juan Castro; Aurélie Courtin; James E. H. Day; Charlotte East; Lynsey Fazal; Brent Graham; Charlotte Mary Griffiths-Jones; John Lyons; Vanessa Martins; Sandra Muench; Joanne M. Munck; David Norton; Marc O’Reilly; Nick Palmer; Puja Pathuri; Michael Reader; David C. Rees; Sharna J. Rich; Caroline Richardson; Harpreet K. Saini; Neil Thompson; Nicola G. Wallis; Hugh Walton; Nicola E. Wilsher; Alison Jo-Anne Woolford

Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.


Archive | 2015

CCDC 1439329: Experimental Crystal Structure Determination

Martyn Frederickson; Mladen Vinkovic; Brian John Williams; Andrew James Woodhead; Alison Jo-Anne Woolford

Related Article: Martyn Frederickson, Mladen Vinkovic, Brian John Williams, Andrew James Woodhead, Alison Jo-Anne Woolford|2014|U.S.Patents|||


Cancer Research | 2012

Abstract 2018: Discovery of potent dual inhibitors of both XIAP and cIAP1 using fragment based drug discovery

Gianni Chessari; Ildiko Maria Buck; Elisabetta Chiarparin; James E. H. Day; Martyn Frederickson; Keisha Hearn; Tom D. Heightman; Petra Hillmann; Aman Iqbal; Christopher N. Johnson; Jon Lewis; Vanessa Martins; Caroline Richardson; Tomoko Smyth; Emiliano Tamanini; Neil Thompson; George Ward; Glyn Williams; Pamela A. Williams; Nicola E. Wilsher; Alison Jo-Anne Woolford

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL XIAP and cIAP1 are members of the inhibitor of apoptosis (IAP) protein family. Both proteins have the ability to attenuate apoptosis induced through intrinsic and extrinsic stimuli via inhibition of caspase-3, -7, -8 and -9. The defining feature of both XIAP and cIAP1 is the presence in their protein sequence of 3 Baculoviral IAP Repeat (BIR) domains, which are necessary for their antiapoptotic activity. The mitochondrial protein SMAC uses its N-terminal region (AVPI) to interact with BIR domains and deactivate the antiapoptotic function of IAPs. Several companies and academic groups have active programs developing SMAC peptidomimetic compounds based on the AVPI motif. In general, those compounds have the tendency to be cIAP1 selective like their tetrapeptide progenitor (AVPI IC50 values for XIAP-BIR3 and cIAP1-BIR3 are 0.3 uM and 0.016 uM respectively). Using our fragment-based screening approach, PyramidTM, we identified a non-peptidomimetic chemotype which binds with similar potency to the BIR3 domain of both XIAP and cIAP1. Hit optimisation using a structure based approach led to the discovery of potent true dual XIAP and cIAP1 antagonists with good in vivo physico-chemical profile and no P450 or hERG liabilities. Dual XIAP/cIAP1 inhibitors have potential for more effective apoptosis and less toxicity associated with cytokine production. Compounds were initially characterised in fluorescence polarisation binding assays using XIAP-BIR3 or cIAP1-BIR3 domains. Robust induction of apoptosis was observed in two sensitive breast cancer cell lines (EC50s well below 0.1 uM in EVSA-T and MDA-MB-231); whilst HCT116 cells (colon cancer) were insensitive (unless exogenous TNF-α was added). This in vitro cell line killing was demonstrated to correlate closely with cIAP1 antagonism and hence a parallel cell assay was established to measure XIAP antagonism. An engineered HEK293 cell line was stably co-transfected with full length FLAG-tagged human XIAP cDNA and full length (untagged) human caspase-9 cDNA. Inhibition of caspase-9 binding to XIAP was measured in immunoprecipitation assays. This gave us a sensitive read-out for XIAP antagonism in cells which could be plotted against the most sensitive cell killing read-out (from the EVSA-T cell line) to establish relative XIAP vs cIAP1 selectivities and to select dual antagonists of both IAPs. Potent compounds (HEK293-EC50 <0.01 uM and EVSA-T-EC50 <0.01 uM) were further characterised in PKPD studies in mice bearing MDA-MB-231 xenografts. Compounds with good oral exposure achieved high concentration in tumor over 24h periods which ensured excellent inhibition of both XIAP and cIAP1 with consequent reduction of cIAP1 levels and induction of apoptosis markers (PARP, Caspase-3). Finally, dual XIAP/cIAP1 inhibitors have been investigated in xenograft models (melanoma, breast and colorectal cancer) and have achieved significant efficacy at tolerated doses. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2018. doi:1538-7445.AM2012-2018

Researchain Logo
Decentralizing Knowledge