Alison K. East
John Innes Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alison K. East.
Journal of Bacteriology | 2009
Ramakrishnan Karunakaran; J. C. Seaman; Alison K. East; B. Mouhsine; T. H. Mauchline; Jürgen Prell; A. Skeffington; Philip S. Poole
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.
International Journal of Systematic and Evolutionary Microbiology | 1996
Alison K. East; Manju Bhandari; Joanna M. Stacey; Kathryn D. Campbell; Matthew D. Collins
The cluster of genes encoding components of the botulinum neurotoxin (BoNT) complex was mapped in proteolytic (group I) Clostridium botulinum strains encoding BoNT types A, B, and F. Two different arrangements of genes were found: type A strain 62A and type B strain NCTC 7273 have similar organizations of genes encoding BoNT, the nontoxic nonhemagglutinin component (NTNH), hemagglutinin components, and P-21; type F strain Langeland has genes encoding BoNT, NTNH, and P-21, and a previously unidentified open reading frame encoding a protein of 416 amino acids. A group of type A strains typified by infant strain Kyoto-F, which is unlike type A strain 62A, lacks genes for hemagglutinin components and exhibits an organization similar to that of type F. Sequencing and pairwise analysis revealed the presence of possible chimeric sequences in some NTNH genes of proteolytic C. botulinum. Discordance in genealogical trees derived from different regions of the NTNH genes was observed which could be symptomatic of recombination and which may indicate that the NTNH gene represents a hot spot for such events within the cluster of genes encoding the BoNT complex. It is also evident that the phylogenetics of the NTNH gene, which is linked to the gene encoding BoNT, does not mirror the evolutionary history of the BoNT, upon which the C. botulinum species complex is defined and subdivided.
Current Microbiology | 1994
Roger A. Hutson; Matthew D. Collins; Alison K. East; Daphne E. Thompson
The neurotoxin gene of non-proteolyticClostridium botulinum type B (strain Eklund 17B) was cloned as a series of overlapping polymerase chain reaction (PCR) fragments generated with primers designed to conserved regions of published botulinal toxin (BoNT) sequences. The 3′ end of the gene was obtained by using primers designed to the determined sequence of non-proteolytic BoNT/B and a published downstream region of BoNT/B gene from a proteolytic strain. Translation of the nucleotide sequence derived from cloned PCR fragments demonstrated the toxin gene encodes a protein of 1291 amino acid residues. Comparative alignment of the derived BoNT/B sequence with those of other published botulinal neurotoxins revealed highest sequence relatedness with BoNT/B of proteolyticC. botulinum. The sequence identity between non-proteolytic and proteolytic BoNT/B was 97.7% for the light chain (corresponding to 10 amino acid changes) and 90.2% for the heavy chain (corresponding to 81 amino acid changes), with most differences occurring at the C-terminal end. A genealogical tree constructed from all known botulinal neurotoxin sequences revealed marked topological differences with a phylogenetic tree ofC. botulinum types based upon small-subunit (16S) ribosomal RNA sequences.
Current Microbiology | 1998
Jesús A. Santos-Buelga; Matthew D. Collins; Alison K. East
Abstract. The organization of the clusters of genes encoding proteins of the botulinum neurotoxin (BoNT) progenitor complex was elucidated in a strain of Clostridium botulinum producing type B and F neurotoxins. With PCR and sequencing strategies, the type B BoNT-gene cluster was found to be composed of genes encoding BoNT/B, nontoxic nonhemagglutinin component (NTNH), P-21, and the hemagglutinins HA-33, HA-17, and HA-70, whereas the type F BoNT-gene cluster has genes encoding BoNT/F, NTNH, P-47, and P-21. Comparative sequence analysis showed that BoNT/F in type BF strain 3281 shares highest homology with BoNT/F of non-proteolytic (group II) C. botulinum whereas NTNH and P-21 in the type F cluster of strain 3281 are more similar to the corresponding proteins in proteolytic (group I) type F C. botulinum. These findings indicate diverse evolutionary origins for genes encoding BoNT/F and its associated non-toxic proteins, although the genes are contiguous. By contrast, sequence comparisons indicate that genes encoding BoNT/B and associated non-toxic proteins in strain 3281 possess a similar evolutionary origin. It was demonstrated that the genes present in the BoNT/B gene cluster of this type BF strain show exceptionally high homology with the equivalent genes in the silent BoNT/B gene cluster of C. botulinum type A(B), possibly indicating their common ancestry.
Current Microbiology | 1994
Alison K. East; Matthew D. Collins
For investigation of the genes of proteins associated in vivo with botulinum neurotoxin (BoNT), polymerase chain reaction (PCR) experiments were carried out with oligonucleotide primers designed to regions of the nontoxic-nonhemagglutinin (NTNH) gene ofClostridium botulinum type C. The primers were used to amplify a DNA fragment from genomic DNA ofC. botulinum types A, B, E, F, G and toxigenic strains ofClostridium barati andClostridium butyricum. The amplified product from all of these strains hybridized with an internal oligonucleotide probe, whereas all nontoxigenic clostridia tested gave no PCR product and showed no reaction with the probe. TheNTNH gene was shown to be located upstream of the gene encoding BoNT, thereby revealing a conserved structure for genes encoding the proteins of the M complex of the progenitor botulinum toxin in these organisms. The sequence of theNTNH gene of nonproteolyticC. botulinum type F was determined by PCR amplification and sequencing of overlapping cloned fragments. NTNH/F showed 71% and 61% identity with NTNH ofC. botulinum type E and type C respectively.
Journal of Bacteriology | 2010
Ramakrishnan Karunakaran; Andreas F. Haag; Alison K. East; Jürgen Prell; Euan K. James; Marco Scocchi; Gail P. Ferguson; Philip S. Poole
BacA is an integral membrane protein, the mutation of which leads to increased resistance to the antimicrobial peptides bleomycin and Bac7(1-35) and a greater sensitivity to SDS and vancomycin in Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. phaseoli, and Rhizobium etli. The growth of Rhizobium strains on dicarboxylates as a sole carbon source was impaired in bacA mutants but was overcome by elevating the calcium level. While bacA mutants elicited indeterminate nodule formation on peas, which belong to the galegoid tribe of legumes, bacteria lysed after release from infection threads and mature bacteroids were not formed. Microarray analysis revealed almost no change in a bacA mutant of R. leguminosarum bv. viciae in free-living culture. In contrast, 45 genes were more-than 3-fold upregulated in a bacA mutant isolated from pea nodules. Almost half of these genes code for cell membrane components, suggesting that BacA is crucial to alterations that occur in the cell envelope during bacteroid development. In stark contrast, bacA mutants of R. leguminosarum bv. phaseoli and R. etli elicited the formation of normal determinate nodules on their bean host, which belongs to the phaseoloid tribe of legumes. Bacteroids from these nodules were indistinguishable from the wild type in morphology and nitrogen fixation. Thus, while bacA mutants of bacteria that infect galegoid or phaseoloid legumes have similar phenotypes in free-living culture, BacA is essential only for bacteroid development in indeterminate galegoid nodules.
Systematic and Applied Microbiology | 1995
Juan J. Cordoba; Matthew D. Collins; Alison K. East
Summary Degenerate oligonucleotide primers, designed to conserved regions of the heavy chain of the botulinum neurotoxin (BoNT), were used to amplify a fragment of approximately 1.1 kb from twenty-five type A Clostridium botulinum strains. These strains were isolated from different geographical locations, from both infant and food-borne botulism. Restriction fragment length polymorphism (RFLP) analysis of the PCR products with Rsa I and Sau3 Al revaled two different groups of BoNT/A genes, designated BoNT/A1 and BoNT/A2. These two groups did not correlate with the origin of the strains, each group containing isolates from infant and food-borne botulism. Organisms isolated from infant botulism in Japan fell into group A2 while all strains examined from the USA, from both infant and food-borne botulism, fell into group A1. Strains from other locations were as follows: food-borne isolates from the UK (groups A1 and A2), Mauritius (group A1) and Venezuela (group A1). In addition, strains encoding BoNT/A1 gave PCR products with primers designated to detect hemagglutinin genes, the products of which form part of the large progenitor toxin complex produced by some strains of C. botulinum , but strains encoding BoNT/A2 gave no such products. In addition, RFLP analysis and probing studies revealed S of the 25 type A strains examined contained unexpressed type B gene sequences.
Current Microbiology | 1998
Mar Rodriguez Jovita; Matthew D. Collins; Alison K. East
Abstract. The gene organization and nucleotide sequence of the type A and B BoNT-gene clusters in Clostridium botulinum strain NCTC 2916 were studied. The aim was to clarify the organization of genes within C. botulinum type A strains possessing an unexpressed BoNT/B gene. The BoNT/A-gene cluster includes genes encoding BoNT, NTNH and a part of P-47 (the gene for this protein was reported in strains of C. botulinum types E and F). Clustered with the silent BoNT/B gene were genes encoding NTNH, P-21 and HA-33. Sequencing analysis of the NTNHs revealed the presence of 471 amino acids identical in the type B and A gene clusters. This gene organization contrasts markedly with the purported organization in strain NCTC 2916 described by Henderson et al. (FEMS Microbiol. Lett. 140, 151–158). In type A(B) strain NCTC 2916, the neurotoxin gene is of type BoNT/A1 within a gene cluster that has identical organization to that found in BoNT/A2 type strains; these observations may be significant in establishing the origin of the BoNT-gene cluster.
Current Microbiology | 1997
Manju Bhandari; Kathryn D. Campbell; Matthew D. Collins; Alison K. East
Abstract. The cluster of genes encoding components of the progenitor botulinum neurotoxin complex has been mapped and cloned in Clostridium botulinum type G strain ATCC 27322. Determination of the nucleotide sequence of the region has revealed open reading frames encoding nontoxic components of the complex, upstream of the gene encoding BoNT/G (botG). The arrangement of these genes differs from that in strains of other antigenic toxin types. Immediately upstream of botG lies a gene encoding a protein of 1198 amino acids, which shows homology with the nontoxic-nonhemagglutinin (NTNH) component of the progenitor complex. Further upstream there are genes encoding proteins with homology to hemagglutinin components (HA-17, HA-70) and a putative positive regulator of gene expression (P-21). Sequence comparison has shown that BoNT/G has highest homology with BoNT/B. The sequence of the BoNT-cluster of genes in non-proteolytic C. botulinum type B strain Eklund 17B has been extended to include the complete NTNH and HA-17, and partial HA-70 gene sequences. Comparison of NTNH/G with other NTNHs reveals that it shows highest homology with NTNH/B consistent with the genealogical affinity shown between BoNT/G and BoNT/B genes.
Systematic and Applied Microbiology | 1994
Alison K. East; Joanna M. Stacey; Matthew D. Collins
Summary Degenerate oligonucleotide primers designed to the N-terminal amino acid sequence of proteins purified from the botulinum neurotoxin complex were used to amplify DNA fragments using PCR from genomic DNA of Clostridium botulinum types A: NCTC 7272, and B: NCTC 7273 (proteolytic strain) and Eklund 17B (non-proteolytic strain). A fragment of ~ 1.9 kb was amplified using template DNA from each strain, which was subsequently cloned in E. coli and the sequences determined. Two open reading frames (orfs) were discovered: one corresponding to a protein ~ 33.7 kD which shows between 36 and 41% identity with the major hemagglutinin component (HA-33) of the botulinum progenitor complex encoded by C. botulinum type C. The second orf, encoding a protein of ~ 21.7 kD, P-21, of 178 amino acids (179 in strain NCTC 7273) has ~ 93% identity between the type A and two type B strains, but is absent from type C.