Alison K. Hall
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alison K. Hall.
Nature | 1997
Stephen J. A. Davies; Michael T. Fitch; Stacey P. Memberg; Alison K. Hall; Geoffrey Raisman; Jerry Silver
It is widely accepted that the adult mammalian central nervous system (CNS) is unable to regenerate axons. In addition to physical or molecular barriers presented by glial scarring at the lesion site, it has been suggested that the normal myelinated CNS environment contains potent growth inhibitors, or lacks growth-promoting molecules,. Here we investigate whether adult CNS white matter can support long-distance regeneration of adult axons in the absence of glial scarring, by using a microtransplantation technique that minimizes scarring to inject minute volumes of dissociated adult rat dorsal root ganglia directly into adult rat CNS pathways. This atraumatic injection procedure allowed considerable numbers of regenerating adult axons immediate access to the host glial terrain, where we found that they rapidly extended for long distances in white matter, eventually invading grey matter. Abortive regeneration correlated precisely with increased levels of proteoglycans within the extracellular matrix at the transplant interface, whereas successfully regenerating transplants were associated with minimal upregulation of these molecules. Our results demonstrate, to our knowledge for the first time, that reactive glial extracellular matrix at the lesion site is directly associated with failure of axon regrowth in vivo, and that adult myelinated white matter tracts beyond the glial scar can be highly permissive for regeneration.
Neuron | 1988
Dennis M. D. Landis; Alison K. Hall; Lori A. Weinstein; Thomas S. Reese
The axoplasm at the presynaptic active zone of excitatory synapses between parallel fibers and Purkinje cell spines contains a meshwork of distinct filaments intermingled with synaptic vesicles, seen most clearly after the rapid freezing, freeze-etch technique of tissue preparation. One set of filaments extends radially from synaptic vesicles and intersects similar filaments associated with vesicles as well as larger filaments arising from the presynaptic membrane. The small, vesicle-associated filaments appear to link synaptic vesicles to one another and to enmesh them in the vicinity of the synaptic junction. The vesicle-associated filaments could be synapsin I because they have the same molecular dimensions and are distributed in the same pattern as synapsin I immunoreactivity.
Annals of Neurology | 2007
Molly Lynn Fuller; Anne DeChant; Brian Rothstein; Andrew V. Caprariello; Rae Wang; Alison K. Hall; Robert H. Miller
To determine the role of bone morphogenetic proteins (BMPs) in stimulating glial scar formation in demyelinating lesions of the adult spinal cord.
Molecular and Cellular Neuroscience | 1995
Stacey P. Memberg; Alison K. Hall
To determine critical periods of action, the effects of trophic factors on rat lumbar dorsal root ganglion (DRG) neurons were evaluated during neurogenesis, and after neurogenesis, before and after target contact. Brain-derived neurotrophic factor and neurotrophin-4 increased E12.5 DRG neuronal survival. Leukemia inhibitory factor enhanced neuronal differentiation. NGF and NT3 increased BrdU incorporation in neurons derived from E12.5 DRG neuroblasts. By contrasts, neurotrophin dependence switched at E14.5 such that BDNF had no survival activity but NGF, NT3, and NT4 supported survival of the same neurons. At birth, DRG neurons were supported by NGF and to a lesser extent, leukemia inhibitory factor. Thus, specific trophic factors discretely regulate proliferation, differentiation, and survival in DRG at different ages. This study complements genetic studies of neurotrophin and trk activity by identifying the critical period of action for and the specific events regulated by each neurotrophin.
Journal of Neuroscience Research | 2004
Alison K. Hall; Robert H. Miller
Bone morphogenetic proteins, members of the TGFβ superfamily have been implicated in a variety of roles in the developing and mature nervous system. These divergent functions are a reflection of the closely defined spatial and temporal expression of BMPs in the CNS, and the potential interactions of the BMP signaling pathway with the STAT and MAP kinase pathways. In this review we discuss the roles of BMPs in early patterning of the CNS, determination of neural cell fate, and regulation of oligodendrocyte maturation during CNS development. Additional functions for members of the TGFβ superfamily in CNS injury responses are emerging suggesting these molecules represent useful targets for manipulating neural responses to CNS insults.
The Journal of Neuroscience | 2005
Pin Xu; Charles Van Slambrouck; Liliana N. Berti-Mattera; Alison K. Hall
Calcitonin gene-related peptide (CGRP) is a sensory neuropeptide important in inflammatory pain that conveys pain information centrally and dilates blood vessels peripherally. Previous studies indicate that activin A increases CGRP-immunoreactive (IR) sensory neurons in vitro, and following wound, activin A protein increases in the skin and more neurons have detectable CGRP expression in the innervating dorsal root ganglion (DRG). These data suggest some adult sensory neurons respond to activin A or other target-derived factors with increased neuropeptide expression. This study was undertaken to test whether activin contributes to inflammatory pain and increased CGRP and to learn which neurons retained plasticity. After adjuvant-induced inflammation, activin mRNA, but not NGF or glial cell line-derived neurotrophic factor, increased in the skin. To examine which DRG neurons increased CGRP immunoreactivity, retrograde tracer-labeled cutaneous neurons were characterized after inflammation. The proportion and size of tracer-labeled DRG neurons with detectable CGRP increased after inflammation. One-third of CGRP-IR neurons that appear after inflammation also had isolectin B4 binding, suggesting that some mechanoreceptors became CGRP-IR. In contrast, the increased proportion of CGRP-IR neurons did not appear to come from RT97-IR neurons. To learn whether central projections were altered after inflammation, CGRP immunoreactivity in the protein kinase Cγ-IR lamina IIi was quantified and found to increase. Injection of activin A protein alone caused robust tactile allodynia and increased CGRP in the DRG. Together, these data support the hypothesis that inflammation and skin changes involving activin A cause some sensory neurons to increase CGRP expression and pain responses.
Journal of Cerebral Blood Flow and Metabolism | 2007
Shibani S. Mukerji; Ekaterina A Katsman; Charles Wilber; Noah A Haner; Warren R. Selman; Alison K. Hall
One approach for developing targeted stroke therapies is to identify the neuronal protective and destructive signaling pathways and gene expression that follow ischemic insult. In some neural injury models, the transforming growth factor-beta family member activin can provide neuroprotective effects in vivo and promote neuronal survival. This study tests if activin supports cortical neurons after ischemic challenge in vitro and if signals after cerebral ischemia involve activin in vivo. In a defined cell culture model that uses hydrogen peroxide (H2O2)-free radical stress, activin addition maintained neuronal survival. H2O2 treatment increased activin mRNA twofold in surviving cortical neurons, and inhibition of activin with neutralizing antibodies caused neuronal death. These data identify activin gene changes as a rapid response to oxidative stress, and indicate that endogenous activin acts as a protective factor for cortical neurons in vitro. Similarly, after transient focal cerebral ischemia in adult mice, activin mRNA increased at 1 and 4 h ipsilateral to the infarct but returned to control values at 24 h after reperfusion. Intracellular activated smad signals were detected in neurons adjacent to the infarct. Activin was also increased after 2 h of 11% hypoxia. Activin mRNA increased at 1 h but not 4 or 24 h after hypoxia, similar to the time course of erythropoietin and vascular endothelial growth factor induction. These findings identify activin as an early-regulated gene response to transient ischemia and hypoxia, and its function in cortical neuron survival during oxidative challenge provides a basis to test activin as a potential therapeutic in stroke injury.
Neuron | 1991
Alison K. Hall; Story C. Landis
To determine whether postmigratory neural crest cells retain the capacity to give rise to multiple cell types, the clonal progeny of embryonic rat superior cervical ganglion (SCG) cells were examined in culture. Double labeling with BrdU and neurofilament antibodies demonstrated that neuron precursors from the E14.5 SCG continued to proliferate for several days in culture. Using the BAG retrovirus to examine the progeny of single cells, we obtained several kinds of distinct clones from SCG cultures after 3 days. At E14.5, during peak neurogenesis in vivo, neuron-containing clones composed of one to seven cells were common. At E17.5, after neurons have been born in vivo, most clones in vitro contained flat cells, primarily reflecting glial cell division. Even in cultures from E13.5 ganglia, mixed clones containing neurons and flat cells were rarely observed. These observations suggest that neuronal and nonneuronal cell precursors are specified during or before early gangliogenesis.
The Journal of Neuroscience | 2007
Weiguo Zhu; Pin Xu; Fernando X. Cuascut; Alison K. Hall; Gerry S. Oxford
Pain hypersensitivity is a cardinal sign of tissue damage, but how molecules from peripheral tissues affect sensory neuron physiology is incompletely understood. Previous studies have shown that activin A increases after peripheral injury and is sufficient to induce acute nociceptive behavior and increase pain peptides in sensory ganglia. This study was designed to test the possibility that the enhanced nociceptive responsiveness associated with activin involved sensitization of transient receptor potential vanilloid I (TRPV1) in primary sensory neurons. Activin receptors were found widely distributed among adult sensory neurons, including those that also express the capsaicin receptor. Whole-cell patch-clamp recording from sensory neurons showed that activin acutely sensitized capsaicin responses and depended on activin receptor kinase activity. Pharmacological studies revealed that the activin sensitization of capsaicin responses required PKCε signaling, but not PI3K (phosphoinositide 3-kinase), ERK (extracellular signal-regulated protein kinase), PKA, PKCα/β, or Src. Furthermore, activin administration caused acute thermal hyperalgesia in wild-type mice, but not in TRPV1-null mice. These data suggest that activin signals through its own receptor, involves PKCε signaling to sensitize the TRPV1 channel, and contributes to acute thermal hyperalgesia.
Developmental Biology | 1985
Alison K. Hall; Urs Rutishauser
The phylogeny of adhesion among cells derived from neural tissue has been examined using a combination of functional and immunological analyses. The presence of the neural cell adhesion molecule (NCAM) was evaluated with respect to NCAM-specific antigenic determinants attached to a polypeptide chain with appropriate electrophoretic properties. By these criteria, NCAM-like molecules were detected in all embryonic and adult vertebrates tested, and an adult mollusc, but not in an adult insect, crustacean, or nematode. The functional assays measured adhesiveness by simple aggregation of neural membrane vesicles, as well as by NCAM-specific binding between membranes from different species. The presence of the NCAM antigen in vertebrate membranes correlated with binding activity in both the NCAM-specific and general adhesion assays, implying that the adhesiveness of these membranes largely reflects NCAM-mediated binding. The results also indicate that NCAM function has been conserved during the evolution of vertebrates, and supports the possibility that mechanisms of nerve-nerve, nerve-muscle, and nerve-glial interaction, which have been demonstrated previously to involve NCAM, may be similar for many chordates. Whereas NCAM was not detected in adult fly and worm, these species did express NCAM-like antigens transiently during early development. These results are consistent with the hypothesis that NCAM is required during several periods of development, and that the functions of this molecule in nematodes and insects may be distinct from or a subset of those that occur in vertebrates. The expanded role of the molecule represented by its expression during later stages of vertebrate development may thus have been an important contribution to the evolution of chordates.