Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison M. Rice is active.

Publication


Featured researches published by Alison M. Rice.


Stem Cell Research | 2012

Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities.

Rebecca Pelekanos; Joan Li; Milena Gongora; Vashe Chandrakanthan; Janelle Scown; Norseha Suhaimi; Gary Brooke; Melinda E. Christensen; Tram Doan; Alison M. Rice; Geoffrey W. Osborne; Sean M. Grimmond; Richard P. Harvey; Kerry Atkinson; Melissa H. Little

Cells resembling bone marrow mesenchymal stem cells (MSC) have been isolated from many organs but their functional relationships have not been thoroughly examined. Here we compared the immunophenotype, gene expression, multipotency and immunosuppressive potential of MSC-like colony-forming cells from adult murine bone marrow (bmMSC), kidney (kCFU-F) and heart (cCFU-F), cultured under uniform conditions. All populations showed classic MSC morphology and in vitro mesodermal multipotency. Of the two solid organ-specific CFU-F, only kCFU-F displayed suppression of T-cell alloreactivity in vitro, albeit to a lesser extent than bmMSC. Quantitative immunophenotyping using 81 phycoerythrin-conjugated CD antibodies demonstrated that all populations contained high percentages of cells expressing diagnostic MSC surface markers (Sca1, CD90.2, CD29, CD44), as well as others noted previously on murine MSC (CD24, CD49e, CD51, CD80, CD81, CD105). Illumina microarray expression profiling and bioinformatic analysis indicated a correlation of gene expression of 0.88-0.92 between pairwise comparisons. All populations expressed approximately 66% of genes in the pluripotency network (Plurinet), presumably reflecting their stem-like character. Furthermore, all populations expressed genes involved in immunomodulation, homing and tissue repair, suggesting these as conserved functions for MSC-like cells in solid organs. Despite this molecular congruence, strong biases in gene and protein expression and pathway activity were seen, suggesting organ-specific functions. Hence, tissue-derived MSC may also retain unique properties potentially rendering them more appropriate as cellular therapeutic agents for their organ of origin.


Stem Cell Research | 2010

Isolation of clonogenic, long-term self renewing embryonic renal stem cells

M. Lusis; Joan Li; Jessica Ineson; Melinda E. Christensen; Alison M. Rice; Melissa H. Little

A tissue stem cell should exhibit long-term self-renewal, clonogenicity and a capacity to differentiate into the tissue of origin. Such a postnatal renal stem cell has not been formally identified. The metanephric mesenchyme (MM) of the developing kidney gives rise to both the renal interstitium and the nephrons and is regarded as the progenitor population of the developing kidney. However, isolated MM does not self renew and requires immortalization for survival in culture. Here we report the isolation and sustained culture of long-term repopulating, clonal progenitors from the embryonic kidney as free floating nephrospheres. Such cells displayed clonal self renewal for in excess of twenty passages when cultured with bFGF and thrombin, showed broad mesodermal multipotentiality, but retained expression of key renal transcription factors (Wt1, Sall1, Eya1, Six1, Six2, Osr1 and Hoxa11). While these cells did display limited capacity to contribute to developing embryonic kidney explants, nephrospheres did not display in vitro renal epithelial capacity. Nephrospheres could be cultured from both Sall1(+) and Sall1(-) fractions of embryonic kidney, suggesting that they were derived from the MM as a whole and not specifically the MM-derived cap mesenchyme committed to nephron formation. This embryonic renal stem cell population was not able to be isolated from postnatal kidney confirming that while the embryonic MM represents a mulitpotent stem cell population, this does not persist after birth.


Journal of Experimental Medicine | 2009

Antibody to the dendritic cell surface activation antigen CD83 prevents acute graft-versus-host disease

John Wilson; Hannah Cullup; Rohan Lourie; Yonghua Sheng; Anna Palkova; Kristen J. Radford; Anne M. Dickinson; Alison M. Rice; Derek N. J. Hart; David J. Munster

Allogeneic (allo) hematopoietic stem cell transplantation is an effective therapy for hematological malignancies but it is limited by acute graft-versus-host disease (GVHD). Dendritic cells (DC) play a major role in the allo T cell stimulation causing GVHD. Current immunosuppressive measures to control GVHD target T cells but compromise posttransplant immunity in the patient, particularly to cytomegalovirus (CMV) and residual malignant cells. We showed that treatment of allo mixed lymphocyte cultures with activated human DC-depleting CD83 antibody suppressed alloproliferation but preserved T cell numbers, including those specific for CMV. We also tested CD83 antibody in the human T cell–dependent peripheral blood mononuclear cell transplanted SCID (hu-SCID) mouse model of GVHD. We showed that this model requires human DC and that CD83 antibody treatment prevented GVHD but, unlike conventional immunosuppressants, did not prevent engraftment of human T cells, including cytotoxic T lymphocytes (CTL) responsive to viruses and malignant cells. Immunization of CD83 antibody-treated hu-SCID mice with irradiated human leukemic cell lines induced allo antileukemic CTL effectors in vivo that lysed 51Cr-labeled leukemic target cells in vitro without further stimulation. Antibodies that target activated DC are a promising new therapeutic approach to the control of GVHD.


Transplantation | 2008

Reduced Intensity Conditioning for Allogeneic Hematopoietic Stem-Cell Transplant Determines the Kinetics of Acute Graft-Versus-Host Disease.

Brie E. Turner; Melinda E. Kambouris; Laura J. Sinfield; Janusz Lange; Ann M. Burns; Rohan Lourie; Kerry Atkinson; Derek N. J. Hart; David J. Munster; Alison M. Rice

Background. Preparative myeloablative conditioning regimens for allogeneic hematopoietic stem-cell transplantation (HSCT) may control malignancy and facilitate engraftment but also contribute to transplant related mortality, cytokine release, and acute graft-versus-host disease (GVHD). Reduced intensity conditioning (RIC) regimens have decreased transplant related mortality but the incidence of acute GVHD, while delayed, remains unchanged. There are currently no in vivo allogeneic models of RIC HSCT, limiting studies into the mechanism behind RIC-associated GVHD. Methods. We developed two RIC HSCT models that result in delayed onset GVHD (major histocompatibility complex mismatched (UBI-GFP/BL6 [H-2b]→BALB/c [H-2d]) and major histocompatibility complex matched, minor histocompatibility mismatched (UBI-GFP/BL6 [H-2b]→BALB.B [H-2b])) enabling the effect of RIC on chimerism, dendritic cell (DC) chimerism, and GVHD to be investigated. Results. In contrast with myeloablative conditioning, we observed that RIC-associated delayed-onset GVHD is characterized by low production of tumor necrosis factor-α, maintenance of host DC, phenotypic DC activation, increased T-regulatory cell numbers, and a delayed emergence of activated donor DC. Furthermore, changes to the peritransplant milieu in the recipient after RIC lead to the altered activation of DC and the induction of T-regulatory responses. Reduced intensity conditioning recipients suffer less early damage to GVHD target organs. However, as donor cells engraft, activated donor DC and rising levels of tumor necrosis factor-α are associated with a later onset of severe GVHD. Conclusions. Delineating the mechanisms underlying delayed onset GVHD in RIC HSCT recipients is vital to improve the prediction of disease onset and allow more targeted interventions for acute GVHD.


Transplantation | 2000

Conditions that enable human hematopoietic stem cell engraftment in all NOD-SCID mice.

Alison M. Rice; Julie A. Wood; Christopher G. Milross; Cathryn J. Collins; Nigel F. McCarthy; Marcus Vowels

BACKGROUND Transplantation of human hematopoietic stem cells is the only true test of their long-term repopulation potential. Models are readily available to evaluate murine hematopoietic stem cells, but few exist that allow reliable quantification of human stem cells. The non-obese diabetic-severe combined immunodeficient (NOD-SCID) mouse model enables quantification of human hematopoietic stem cells, but the conditions that permit human engraftment in all animals have yet to be defined. The aims of the project were, therefore, to describe the variables that allow human engraftment in the NOD-SCID mouse model and the techniques that accurately quantify this engraftment. METHODS NOD-SCID mice that had or had not received 250, 325, or 400 cGy irradiation received cord blood (CB) mononuclear or CD34+ cells i.v. or i.p. Mice were killed 6 weeks after transplantation, and the bone marrow, spleen, and thymus were harvested. Four-color flow cytometric analysis, semi-quantitative PCR, myeloid and erythroid progenitor, and stem cell assays were used to monitor human engraftment. RESULTS A 250 or 325 cGy and i.v. injection of CB mononuclear or CD34+ cells is required to detect multilineage human engraftment in the bone marrow, spleen, or thymus of NOD-SCID mice. Four-color flow cytometric analysis and semi-quantitative PCR enable accurate detection of 0.1% human cells. Progenitor and stem cell assays provide functional information about the engrafted cells. CONCLUSIONS Successful development of the NOD-SCID mouse model and techniques to assess human engraftment now allow it to be used reliably to analyze the effects of short-term cytokine exposure on the long-term repopulating capacity of CB stem cells.


Journal of Immunology | 2011

Myeloma-Induced Alloreactive T Cells Arising in Myeloma-Infiltrated Bones Include Double-Positive CD8+CD4+ T Cells: Evidence from Myeloma-Bearing Mouse Model

Lisa M. Freeman; Alfred King-Yin Lam; Eugen Bogdan Petcu; Robert A. Smith; Ali Salajegheh; Peter Diamond; Andrew C.W. Zannettino; Andreas Evdokiou; John Luff; Pooi-Fong Wong; Dalia Khalil; Nigel J. Waterhouse; Frank Vari; Alison M. Rice; Laurence Catley; Derek N. J. Hart; Slavica Vuckovic

The graft-versus-myeloma (GVM) effect represents a powerful form of immune attack exerted by alloreactive T cells against multiple myeloma cells, which leads to clinical responses in multiple myeloma transplant recipients. Whether myeloma cells are themselves able to induce alloreactive T cells capable of the GVM effect is not defined. Using adoptive transfer of T naive cells into myeloma-bearing mice (established by transplantation of human RPMI8226-TGL myeloma cells into CD122+ cell-depleted NOD/SCID hosts), we found that myeloma cells induced alloreactive T cells that suppressed myeloma growth and prolonged survival of T cell recipients. Myeloma-induced alloreactive T cells arising in the myeloma-infiltrated bones exerted cytotoxic activity against resident myeloma cells, but limited activity against control myeloma cells obtained from myeloma-bearing mice that did not receive T naive cells. These myeloma-induced alloreactive T cells were derived through multiple CD8+ T cell divisions and enriched in double-positive (DP) T cells coexpressing the CD8αα and CD4 coreceptors. MHC class I expression on myeloma cells and contact with T cells were required for CD8+ T cell divisions and DP-T cell development. DP-T cells present in myeloma-infiltrated bones contained a higher proportion of cells expressing cytotoxic mediators IFN-γ and/or perforin compared with single-positive CD8+ T cells, acquired the capacity to degranulate as measured by CD107 expression, and contributed to an elevated perforin level seen in the myeloma-infiltrated bones. These observations suggest that myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones are enriched with DP-T cells equipped with cytotoxic effector functions that are likely to be involved in the GVM effect.


Experimental Hematology | 2008

Compartmentalization of allogeneic T-cell responses in the bone marrow and spleen of humanized NOD/SCID mice containing activated human resident myeloid dendritic cells.

Slavica Vuckovic; Fadilah S. Abdul Wahid; Alison M. Rice; Masato Kato; Dalia Khalil; Robyn Rodwell; Derek N. J. Hart

OBJECTIVE Human allogeneic (allo)-T-cell responses within recipient lymphoid tissues and the degree to which they are altered in the presence of activated tissue-resident dendritic cells (DC) remain unknown. This study examined allo-T-cell recruitment and the early allo-T-cell responses that occur in the bone marrow (BM) and spleen (SP) of humanized (hu) nonobese diabetic (NOD)/severe combined immunodeficient (SCID) recipients containing activated human tissue-resident myeloid DC (MDC). MATERIALS AND METHODS Human naïve allo-T cells were transferred into polyinosinic:polycytidylic acid [poly(I:C)]-treated or untreated huNOD/SCID recipients containing human tissue-resident DC derived from transplanted CD34(+) cells. Activation of human tissue-resident MDC mediated by poly(I:C) treatment, recruitment, proliferation, and effector differentiation of allo-T cells in the BM and SP of huNOD/SCID recipients were analyzed in vivo by flow cytometry. RESULTS Poly(I:C) treatment induced transient activation of human MDC within a maximum of 8 hours, as evidenced in the BM by an increased proportion of MDC-expressing CD86 while in the SP by MDC expressing CD86 and producing interleukin-12. Poly(I:C)-pretreated huNOD/SCID recipients showed changes in the recruitment of allo-T cells in the BM and SP and developed different allo-T cell responses within the BM and SP compartments. In the BM, allo-T cells underwent multiple divisions and increased numbers of interferon-gamma(+) and tumor necrosis factor-alpha(+) effector cells, while the majority of splenic allo-T cells underwent a single division and had fewer effector allo-T cells. CONCLUSIONS Our experimental transplantation model demonstrates that early allo-T-cell responses are regulated by compartmentalization in the BM and secondary lymphoid tissues; events potentially occurring after allotransplantation in human recipients.


British Journal of Haematology | 2001

Prolonged ex vivo culture of cord blood CD34 + cells facilitates myeloid and megakaryocytic engraftment in the non-obese diabetic severe combined immunodeficient mouse model

Alison M. Rice; Julie A. Wood; Christopher G. Milross; Cathryn J. Collins; Jamie Case; Marcus Vowels; Robert E. Nordon

A clinical goal for ex vivo expansion of cord blood (CB) CD34+ cells is to shorten the period of neutropenia and thrombocytopenia following myeloablative therapy and transplantation. Prolongation of cytokine expansion leads to the production of greater numbers of cells, and should have an impact on neutrophil and platelet recovery. Furthermore, expansion of CD34+ cells should support the continued production of neutrophils and platelets in the 6‐week period following transplantation. We tested these hypotheses by characterization of the kinetics (human CD45+ cells in the blood) and phenotype (CD45, CD34, CD61, CD33, CD19 and CD3) of human engraftment in the non‐obese diabetic severe combined immunodeficient mouse (NOD–SCID) following 7 or 14 d of ex vivo expansion of CB CD34+ cells. Mice transplanted with 14 d cells showed greater percentages of human CD45+ cells in the blood, bone marrow and spleen than mice transplanted with unexpanded cells or 7 d cells. Prolonging cytokine exposure of CD34+ cells and transplantation with increasing numbers of input cells facilitated the production of absolute numbers of CD34+, CD33+, CD61+ and CD19+ cells in vivo. Furthermore, analysis of SCID engrafting potential showed that prolongation of culture duration facilitates in vivo expansion of CD45+, CD34+ and CD19+ cells after transplantation. It is anticipated that prolonged (2 weeks) ex vivo culture of CB will have a beneficial clinical effect.


Pathology | 2011

Mobilisation strategies for normal and malignant cells

L. Bik To; Jean-Pierre Levesque; Kirsten Herbert; Ingrid G. Winkler; Linda J. Bendall; Devendra K. Hiwase; Vicki Antonenas; Alison M. Rice; David Gottlieb; Anthony K. Mills; John E.J. Rasko; Stephen Larsen; Ashanka Beligaswatte; Susan K. Nilsson; Julian Cooney; Antony C. Cambareri; Ian D. Lewis

Summary This review evaluates the latest information on the mobilisation of haemopoietic stem cells for transplantation, with the focus on what is the current best practice and how new understanding of the bone marrow stem cell niche provides new insights into optimising mobilisation regimens. The review then looks at the mobilisation of mesenchymal stromal cells, immune cells as well as malignant cells and what clinical implications there are.


Cytotherapy | 2010

Reduced intensity conditioning for hematopoietic stem cell transplantation: has it achieved all it set out to?

Brie E. Turner; Matthew Collin; Alison M. Rice

At its inception, reduced intensity conditioning (RIC) was heralded as a means to limit toxicity after hematopoietic stem cell transplantation (HSCT), especially for the older patient demographic. The aim was to promote the inherent anti-leukemic activity of the transplant whilst reducing toxicity and transplant-related mortality (TRM). More than 10 years on, much has been learnt about the role of conditioning in determining outcomes after transplantation. The use of RIC as a preparative regimen has increased the number of patients that can benefit from HSCT because the initial therapy is less toxic. However, many of the early pioneers of RIC quickly realized that the toxicity from graft-versus-host disease (GvHD) was equally as potent as that from conditioning. Furthermore, questions remain concerning the efficacy of RIC regimens in retaining anti-leukemic immunity, especially in cases of aggressive disease. The undoubted synergy between chemotherapeutic and immunologic treatment of malignancy means that reduction of conditioning intensity to minimal levels may not be entirely logical.

Collaboration


Dive into the Alison M. Rice's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerry Atkinson

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy K.W. Hsu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Melinda E. Christensen

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar

Richard B. Lock

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Hannah Cullup

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gary Brooke

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Rohan Lourie

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge