Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison Male is active.

Publication


Featured researches published by Alison Male.


The New England Journal of Medicine | 2008

Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes

Mefford Hc; Andrew J. Sharp; Carl Baker; Andy Itsara; Zhaoshi Jiang; Karen Buysse; Shuwen Huang; Viv Maloney; John A. Crolla; Diana Baralle; Amanda L. Collins; Catherine L. Mercer; Koenraad K. Norga; Thomy de Ravel; Koenraad Devriendt; Ernie M.H.F. Bongers; Nicole de Leeuw; William Reardon; Stefania Gimelli; Frédérique Béna; Raoul C. M. Hennekam; Alison Male; Lorraine Gaunt; Jill Clayton-Smith; Ingrid Simonic; Soo Mi Park; Sarju G. Mehta; Serena Nik-Zainal; C. Geoffrey Woods; Helen V. Firth

BACKGROUNDnDuplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients.nnnMETHODSnWe tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons.nnnRESULTSnWe identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies.nnnCONCLUSIONSnWe have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype.


Nature Genetics | 2012

Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature

Gillian I. Rice; Paul R. Kasher; Gabriella M.A. Forte; Niamh M. Mannion; Sam M. Greenwood; Marcin Szynkiewicz; Jonathan E. Dickerson; Sanjeev Bhaskar; Massimiliano Zampini; Tracy A. Briggs; Emma M. Jenkinson; Carlos A. Bacino; Roberta Battini; Enrico Bertini; Paul A. Brogan; Louise Brueton; Marialuisa Carpanelli; Corinne De Laet; Pascale de Lonlay; Mireia del Toro; Isabelle Desguerre; Elisa Fazzi; Angels García-Cazorla; Arvid Heiberg; Masakazu Kawaguchi; Ram Kumar; Jean-Pierre Lin; Charles Marques Lourenço; Alison Male; Wilson Marques

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.


BJUI | 2011

Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: preliminary analysis of the results of the IMPACT study

Anita V. Mitra; Elizabeth Bancroft; Yolanda Barbachano; Elizabeth Page; Christopher S. Foster; Charles Jameson; Gillian Mitchell; Geoffrey J. Lindeman; Alan M. F. Stapleton; Graeme Suthers; D. G. Evans; Dorthe Gylling Crüger; Ignacio Blanco; Catherine Mercer; Judy Kirk; Lovise Mæhle; Shirley Hodgson; Lisa Walker; Louise Izatt; F. Douglas; Katherine L. Tucker; Huw Dorkins; Virginia E. Clowes; Alison Male; Alan Donaldson; Carole Brewer; Rebecca Doherty; B. Bulman; Palle Jørn Sloth Osther; Monica Salinas

Study Type – Diagnostic (validating cohort)u2028Level of Evidenceu20031b


PLOS ONE | 2010

The rs10993994 risk allele for prostate cancer results in clinically relevant changes in microseminoprotein-beta expression in tissue and urine.

Hayley C. Whitaker; Zsofia Kote-Jarai; Helen Ross-Adams; Anne Warren; Johanna Burge; Anne George; Elizabeth Bancroft; Sameer Jhavar; Daniel Leongamornlert; Malgorzata Tymrakiewicz; Edward J. Saunders; Elizabeth Page; Anita V. Mitra; Gillian Mitchell; Geoffrey J. Lindeman; D. Gareth Evans; Ignacio Blanco; Catherine Mercer; Wendy S. Rubinstein; Virginia E. Clowes; Fiona Douglas; Shirley Hodgson; Lisa Walker; Alan Donaldson; Louise Izatt; Huw Dorkins; Alison Male; Katherine L. Tucker; Alan M. F. Stapleton; Jimmy Lam

Background Microseminoprotein-beta (MSMB) regulates apoptosis and using genome-wide association studies the rs10993994 single nucleotide polymorphism in the MSMB promoter has been linked to an increased risk of developing prostate cancer. The promoter location of the risk allele, and its ability to reduce promoter activity, suggested that the rs10993994 risk allele could result in lowered MSMB in benign tissue leading to increased prostate cancer risk. Methodology/Principal Findings MSMB expression in benign and malignant prostate tissue was examined using immunohistochemistry and compared with the rs10993994 genotype. Urinary MSMB concentrations were determined by ELISA and correlated with urinary PSA, the presence or absence of cancer, rs10993994 genotype and age of onset. MSMB levels in prostate tissue and urine were greatly reduced with tumourigenesis. Urinary MSMB was better than urinary PSA at differentiating men with prostate cancer at all Gleason grades. The high risk allele was associated with heterogeneity of MSMB staining and loss of MSMB in both tissue and urine in benign prostate. Conclusions These data show that some high risk alleles discovered using genome-wide association studies produce phenotypic effects with potential clinical utility. We provide the first link between a low penetrance polymorphism for prostate cancer and a potential test in human tissue and bodily fluids. There is potential to develop tissue and urinary MSMB for a biomarker of prostate cancer risk, diagnosis and disease monitoring.


American Journal of Human Genetics | 2015

Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling

Lot Snijders Blok; Erik Madsen; Jane Juusola; Christian Gilissen; Diana Baralle; Margot R.F. Reijnders; Hanka Venselaar; Céline Helsmoortel; Megan T. Cho; Alexander Hoischen; Lisenka E.L.M. Vissers; Tom S. Koemans; Willemijn Wissink-Lindhout; Evan E. Eichler; Corrado Romano; Hilde Van Esch; Connie Stumpel; Maaike Vreeburg; Eric Smeets; Karin Oberndorff; Bregje W.M. van Bon; Marie Shaw; Jozef Gecz; Eric Haan; Melanie Bienek; Corinna Jensen; Bart Loeys; Anke Van Dijck; A. Micheil Innes; Hilary Racher

Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.


Nature Genetics | 2014

Mutations in ZBTB20 cause Primrose syndrome

Viviana Cordeddu; Bert Redeker; Emilia Stellacci; Aldo Jongejan; Alessandra Fragale; Ted E.J. Bradley; Massimiliano Anselmi; Andrea Ciolfi; Serena Cecchetti; Valentina Muto; Laura Bernardini; Meron Azage; Daniel R. Carvalho; Alberto J. Espay; Alison Male; Anna Maja Molin; Renata Posmyk; Carla Battisti; Alberto Casertano; Daniela Melis; Antoine H. C. van Kampen; Frank Baas; Marcel Mannens; Gianfranco Bocchinfuso; Lorenzo Stella; Marco Tartaglia; Raoul C. M. Hennekam

Primrose syndrome and 3q13.31 microdeletion syndrome are clinically related disorders characterized by tall stature, macrocephaly, intellectual disability, disturbed behavior and unusual facial features, with diabetes, deafness, progressive muscle wasting and ectopic calcifications specifically occurring in the former. We report that missense mutations in ZBTB20, residing within the 3q13.31 microdeletion syndrome critical region, underlie Primrose syndrome. This finding establishes a genetic link between these disorders and delineates the impact of ZBTB20 dysregulation on development, growth and metabolism.


American Journal of Medical Genetics Part A | 2015

A Study of the Clinical and Radiological Features in a Cohort of 93 Patients with a COL2A1 Mutation Causing Spondyloepiphyseal Dysplasia Congenita or a Related Phenotype

Paulien A. Terhal; Rutger A.J. Nievelstein; Eva J. J. Verver; Vedat Topsakal; Paula van Dommelen; Kristien Hoornaert; Martine Le Merrer; Andreas Zankl; Marleen Simon; Sarah F. Smithson; Carlo Marcelis; Bronwyn Kerr; Jill Clayton-Smith; Esther Kinning; Sahar Mansour; Frances Elmslie; Linda Goodwin; Annemarie H. van der Hout; Hermine E. Veenstra-Knol; Johanna C. Herkert; Allan M. Lund; Raoul C. M. Hennekam; André Mégarbané; Melissa Lees; Louise C. Wilson; Alison Male; Jane Hurst; Yasemin Alanay; Goeran Anneren; Regina C. Betz

Type 2 collagen disorders encompass a diverse group of skeletal dysplasias that are commonly associated with orthopedic, ocular, and hearing problems. However, the frequency of many clinical features has never been determined. We retrospectively investigated the clinical, radiological, and genotypic data in a group of 93 patients with molecularly confirmed SEDC or a related disorder. The majority of the patients (80/93) had short stature, with radiological features of SEDC (nu2009=u200964), others having SEMD (nu2009=u20095), Kniest dysplasia (nu2009=u20097), spondyloperipheral dysplasia (nu2009=u20092), or Torrance‐like dysplasia (nu2009=u20092). The remaining 13 patients had normal stature with mild SED, Stickler‐like syndrome or multiple epiphyseal dysplasia. Over 50% of the patients had undergone orthopedic surgery, usually for scoliosis, femoral osteotomy or hip replacement. Odontoid hypoplasia was present in 56% (95% CI 38–74) and a correlation between odontoid hypoplasia and short stature was observed. Atlanto‐axial instability, was observed in 5 of the 18 patients (28%, 95% CI 10–54) in whom flexion‐extension films of the cervical spine were available; however, it was rarely accompanied by myelopathy. Myopia was found in 45% (95% CI 35–56), and retinal detachment had occurred in 12% (95% CI 6–21; median age 14 years; youngest age 3.5 years). Thirty‐two patients complained of hearing loss (37%, 95% CI 27–48) of whom 17 required hearing aids. The ophthalmological features and possibly also hearing loss are often relatively frequent and severe in patients with splicing mutations. Based on clinical findings, age at onset and genotype–phenotype correlations in this cohort, we propose guidelines for the management and follow‐up in this group of disorders.


Human Genetics | 2016

Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins

Przemyslaw Szafranski; Tomasz Gambin; Avinash V. Dharmadhikari; Kadir C. Akdemir; Shalini N. Jhangiani; Jennifer Schuette; Nihal Godiwala; Svetlana A. Yatsenko; Jessica Sebastian; Suneeta Madan-Khetarpal; Urvashi Surti; Rosanna G. Abellar; David A. Bateman; Ashley Wilson; Melinda Markham; Jill Slamon; Fernando Santos-Simarro; María Palomares; Julián Nevado; Pablo Lapunzina; Brian Hon-Yin Chung; Wai Lap Wong; Yoyo W. Y. Chu; Gary Tsz Kin Mok; Eitan Kerem; Joel Reiter; Namasivayam Ambalavanan; Scott A. Anderson; David R. Kelly; Joseph T.C. Shieh

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV.


In: JOURNAL OF MEDICAL GENETICS. (pp. S70 - S70). B M J PUBLISHING GROUP (2007) | 2007

A leap in the LEOPARD phenotype

Alison Male; M Bitner-Glindzicz; J Short; Nj Sebire; Alex Magee; John I. Harper; Raoul C. M. Hennekam

Collaboration


Dive into the Alison Male's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine L. Tucker

University of Massachusetts Lowell

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan M. F. Stapleton

Repatriation General Hospital

View shared research outputs
Top Co-Authors

Avatar

Geoffrey J. Lindeman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Gillian Mitchell

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita V. Mitra

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Baralle

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge