Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison Miyamoto is active.

Publication


Featured researches published by Alison Miyamoto.


Oncogene | 2008

The many facets of Notch ligands

Brendan N. D'Souza; Alison Miyamoto; Gerry Weinmaster

The Notch signaling pathway regulates a diverse array of cell types and cellular processes and is tightly regulated by ligand binding. Both canonical and noncanonical Notch ligands have been identified that may account for some of the pleiotropic nature associated with Notch signaling. This review focuses on the molecular mechanisms by which Notch ligands function as signaling agonists and antagonists, and discusses different modes of activating ligands as well as findings that support intrinsic ligand signaling activity independent of Notch. Post-translational modification, proteolytic processing, endocytosis and membrane trafficking, as well as interactions with the actin cytoskeleton may contribute to the recently appreciated multifunctionality of Notch ligands. The regulation of Notch ligand expression by other signaling pathways provides a mechanism to coordinate Notch signaling with multiple cellular and developmental cues. The association of Notch ligands with inherited human disorders and cancer highlights the importance of understanding the molecular nature and activities intrinsic to Notch ligands.


Molecular and Cellular Biology | 2000

SKIP, a CBF1-Associated Protein, Interacts with the Ankyrin Repeat Domain of NotchIC To Facilitate NotchIC Function

S. Zhou; Masahiro Fujimuro; James J. Hsieh; L. Chen; Alison Miyamoto; Gerry Weinmaster; S. D. Hayward

ABSTRACT Notch proteins are transmembrane receptors that mediate intercell communication and direct individual cell fate decisions. The activated intracellular form of Notch, NotchIC, translocates to the nucleus, where it targets the DNA binding protein CBF1. CBF1 mediates transcriptional repression through the recruitment of an SMRT-histone deacetylase-containing corepressor complex. We have examined the mechanism whereby NotchIC overcomes CBF1-mediated transcriptional repression. We identified SKIP (Ski-interacting protein) as a CBF1 binding protein in a yeast two-hybrid screen. Both CBF1 and SKIP are highly conserved evolutionarily, and the SKIP-CBF1 interaction is also conserved in assays using the Caenorhabditis elegans andDrosophila melanogaster SKIP homologs. Protein-protein interaction assays demonstrated interaction between SKIP and the corepressor SMRT. More surprisingly, SKIP also interacted with NotchIC. The SMRT and NotchIC interactions were mutually exclusive. In competition binding experiments SMRT displaced NotchIC from CBF1 and from SKIP. Contact with SKIP is required for biological activity of NotchIC. A mutation in the fourth ankyrin repeat that abolished Notch signal transduction did not affect interaction with CBF1 but abolished interaction with SKIP. Further, NotchIC was unable to block muscle cell differentiation in myoblasts expressing antisense SKIP. The results suggest a model in which NotchIC activates responsive promoters by competing with the SMRT-corepressor complex for contacts on both CBF1 and SKIP.


Nature Genetics | 1998

Association of SET domain and myotubularin-related proteins modulates growth control

Xiangmin Cui; Immaculata De Vivo; Robert Slany; Alison Miyamoto; Ron Firestein; Michael L. Cleary

Several proteins that contribute to epigenetic mechanisms of gene regulation contain a characteristic motif of unknown function called the SET (Suvar3-9, Enhancer-of-zeste, Trithorax) domain. We have demonstrated that SET domains mediate highly conserved interactions with a specific family of proteins that display similarity with dual-specificity phosphatases (dsPTPases). These include myotubularin, the gene of which is mutated in a subset of patients with X-linked myotubular myopathy, and Sbf1, a newly isolated homologue of myotubularin. In contrast with myotubularin, Sbf 1 lacks a functional catalytic domain which dephosphorylates phospho-tyrosine and serine-containing peptides in vitro. Competitive interference of endogenous SET domain-dsPTPase interactions by forced expression of Sbf 1 induced oncogenic transformation of NIH 3T3 fibroblasts and impaired the in vitro differentiation of C2 myoblast cells. We conclude that myotubularin-type phosphatases link SET-domain containing components of the epigenetic regulatory machinery with signalling pathways involved in growth and differentiation.


Journal of Cell Biology | 2007

DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur

James T. Nichols; Alison Miyamoto; Samantha L. Olsen; Brendan N. D'Souza; Christine Yao; Gerry Weinmaster

Cleavage of Notch by furin is required to generate a mature, cell surface heterodimeric receptor that can be proteolytically activated to release its intracellular domain, which functions in signal transduction. Current models propose that ligand binding to heterodimeric Notch (hNotch) induces a disintegrin and metalloprotease (ADAM) proteolytic release of the Notch extracellular domain (NECD), which is subsequently shed and/or endocytosed by DSL ligand cells. We provide evidence for NECD release and internalization by DSL ligand cells, which, surprisingly, did not require ADAM activity. However, losses in either hNotch formation or ligand endocytosis significantly decreased NECD transfer to DSL ligand cells, as well as signaling in Notch cells. Because endocytosis-defective ligands bind hNotch, but do not dissociate it, additional forces beyond those produced through ligand binding must function to disrupt the intramolecular interactions that keep hNotch intact and inactive. Based on our findings, we propose that mechanical forces generated during DSL ligand endocytosis function to physically dissociate hNotch, and that dissociation is a necessary step in Notch activation.


Journal of Cell Biology | 2005

The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands.

Ena Ladi; James T. Nichols; Weihong Ge; Alison Miyamoto; Christine Yao; Liang-Tung Yang; Jim Boulter; Yi E. Sun; Chris Kintner; Gerry Weinmaster

Mutations in the DSL (Delta, Serrate, Lag2) Notch (N) ligand Delta-like (Dll) 3 cause skeletal abnormalities in spondylocostal dysostosis, which is consistent with a critical role for N signaling during somitogenesis. Understanding how Dll3 functions is complicated by reports that DSL ligands both activate and inhibit N signaling. In contrast to other DSL ligands, we show that Dll3 does not activate N signaling in multiple assays. Consistent with these findings, Dll3 does not bind to cells expressing any of the four N receptors, and N1 does not bind Dll3-expressing cells. However, in a cell-autonomous manner, Dll3 suppressed N signaling, as was found for other DSL ligands. Therefore, Dll3 functions not as an activator as previously reported but rather as a dedicated inhibitor of N signaling. As an N antagonist, Dll3 promoted Xenopus laevis neurogenesis and inhibited glial differentiation of mouse neural progenitors. Finally, together with the modulator lunatic fringe, Dll3 altered N signaling levels that were induced by other DSL ligands.


Journal of Neuroscience Research | 2002

Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation.

Weihong Ge; Keri Martinowich; Xiangbing Wu; Fei He; Alison Miyamoto; Guoping Fan; Gerry Weinmaster; Yi E. Sun

In the developing central nervous system (CNS), Notch signaling preserves progenitor pools and inhibits neurogenesis and oligodendroglial differentiation. It has recently been postulated that Notch instructively drives astrocyte differentiation. Whether the role of Notch signaling in promoting astroglial differentiation is permissive or instructive has been debated. We report here that the astrogliogenic role of Notch is in part mediated by direct binding of the Notch intracellular domain to the CSL DNA binding protein, forming a transcriptional activation complex onto the astrocyte marker gene, glial fibrillary acidic protein (GFAP). In addition, we found that, in CSL–/– neural stem cell cultures, astrocyte differentiation was delayed but continued at a normal rate once initiated, suggesting that CSL is involved in regulating the onset of astrogliogenesis. Importantly, although the classical CSL‐dependent Notch signaling pathway is intact and able to activate the Notch canonical target promoter during the neurogenic phase, it is unable to activate the GFAP promoter during neurogenesis. Therefore, the effect of Notch signaling on target genes is influenced by cellular context in regulation of neurogenesis and gliogenesis.


Traffic | 2007

Notch Signaling – Constantly on the Move

James T. Nichols; Alison Miyamoto; Gerry Weinmaster

The Notch pathway is a highly conserved and ubiquitous signaling system that functions in determining a diverse array of cell fates and regulates many cellular processes during embryonic development and throughout adulthood. Links to cancer, stroke and Alzheimers disease underscore the need to define the molecular basis of Notch activation. Notch signaling is induced through direct cell–cell interactions that promote receptor activation following engagement with a membrane‐bound Delta, Serrate, Lag‐2 (DSL) ligand on adjacent cells. Cells take on distinct fates because Notch signaling is consistently activated in only one of the two interacting cells, highlighting the importance of establishing and maintaining signaling polarity. Studies in flies and worms have identified positive and negative transcriptional feedback mechanisms that amplify small differences in Notch and DSL ligand expression to bias which cells send or receive signals. However, endocytosis by signal‐sending and signal‐receiving cells also appears critical for directing and regulating Notch activation. In particular, endocytosis and membrane trafficking of DSL ligands, Notch and modulators can determine the competence of cells to send or receive signals that ensure reproducibility in generating cell types regulated by Notch signaling.


Journal of Biological Chemistry | 2006

Microfibrillar proteins MAGP-1 and MAGP-2 induce Notch1 extracellular domain dissociation and receptor activation

Alison Miyamoto; Rhiana Lau; Patrick W. Hein; J. Michael Shipley; Gerry Weinmaster

Unlike most receptors, Notch serves as both the receiver and direct transducer of signaling events. Activation can be mediated by one of five membrane-bound ligands of either the Delta-like (-1, -2, -4) or Jagged/Serrate (-1, -2) families. Alternatively, dissociation of the Notch heterodimer with consequent activation can also be mediated experimentally by calcium chelators or by mutations that destabilize the Notch1 heterodimer, such as in the human disease T cell acute lymphoblastic leukemia. Here we show that MAGP-2, a protein present on microfibrils, can also interact with the EGF-like repeats of Notch1. Co-expression of MAGP-2 with Notch1 leads to both cell surface release of the Notch1 extracellular domain and subsequent activation of Notch signaling. Moreover, we demonstrate that the C-terminal domain of MAGP-2 is required for binding and activation of Notch1. Based on the high level of homology, we predicted and further showed that MAGP-1 can also bind to Notch1, cause the release of the extracellular domain, and activate signaling. Notch1 extracellular domain release induced by MAGP-2 is dependent on formation of the Notch1 heterodimer by a furin-like cleavage, but does not require the subsequent ADAM metalloprotease cleavage necessary for production of the Notch signaling fragment. Together these results demonstrate for the first time that the microfibrillar proteins MAGP-1 and MAGP-2 can function outside of their role in elastic fibers to activate a cellular signaling pathway.


Journal of Immunology | 2000

Notch signaling enhances survival and alters differentiation of 32D myeloblasts.

Hongying Tina Tan‐Pertel; Liberty Walker; Damaris Browning; Alison Miyamoto; Gerry Weinmaster; Judith C. Gasson

The Notch transmembrane receptors play important roles in precursor survival and cell fate specification during hematopoiesis. To investigate the function of Notch and the signaling events activated by Notch in myeloid development, we expressed truncated forms of Notch1 or Notch2 proteins that either can or cannot activate the core binding factor 1 (CBF1) in 32D (clone 3) myeloblasts. 32D cells proliferate as blasts in the presence of the cytokines, GM-CSF or IL-3, but they initiate differentiation and undergo granulopoiesis in the presence of granulocyte CSF (G-CSF). 32D cells expressing constitutively active forms of Notch1 or Notch2 proteins that signal through the CBF1 pathway maintained significantly higher numbers of viable cells and exhibited less cell death during G-CSF induction compared with controls. They also displayed enhanced entry into granulopoiesis, and inhibited postmitotic terminal differentiation. In contrast, Notch1 constructs that either lacked sequences necessary for CBF1 binding or that failed to localize to the nucleus had little effect. Elevated numbers of viable cells during G-CSF treatment were also observed in 32D cells overexpressing the basic helix-loop-helix protein (bHLH), HES1, consistent with activation of the CBF1 pathway. Taken together, our data suggest that Notch signaling enhances 32D cell survival, promotes entry into granulopoiesis, and inhibits postmitotic differentiation through a CBF1-dependent pathway.


Matrix Biology | 2013

Identification of a functional proprotein convertase cleavage site in microfibril-associated glycoprotein 2

Lauren J. Donovan; Seung E. Cha; Andrew R. Yale; Stephanie Dreikorn; Alison Miyamoto

Microfibril-associated glycoprotein 2 (MAGP2) is a secreted protein associated with multiple cellular activities including the organization of elastic fibers in the extracellular matrix (ECM), angiogenesis, as well as regulating Notch and integrin signaling. Importantly, increases in MAGP2 positively correlate with poor prognosis for some ovarian cancers. It has been assumed that full-length MAGP2 is responsible for all reported effects; however, here we show MAGP2 is a substrate for the proprotein convertase (PC) family of endoproteases. Proteolytic processing of MAGP2 by PC cleavage could serve to regulate secretion and thus, activity and function as reported for other extracellular and cell-surface proteins. In support of this idea, MAGP2 contains an evolutionarily conserved PC consensus cleavage site, and amino acid sequencing of a newly identified MAGP2 C-terminal cleavage product confirmed functional PC cleavage. Additionally, mutagenesis of the MAGP2 PC consensus cleavage site or treatment with PC inhibitors prevented MAGP2 proteolytic processing. Finally, both cleaved and uncleaved MAGP2 were detected extracellularly and MAGP2 secretion appeared independent of PC cleavage, suggesting that PC processing occurs mainly outside the cell. Our characterization of alternative forms of MAGP2 present in the extracellular space not only enhances diversity of this ECM protein but also provides a previously unrecognized molecular mechanism for regulation of MAGP2 biological activity.

Collaboration


Dive into the Alison Miyamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren J. Donovan

California State University

View shared research outputs
Top Co-Authors

Avatar

Breanna Connett

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Yao

University of California

View shared research outputs
Top Co-Authors

Avatar

Edgar Perez

California State University

View shared research outputs
Top Co-Authors

Avatar

Gordon Withers

California State University

View shared research outputs
Top Co-Authors

Avatar

Gregory Hogrebe

California State University

View shared research outputs
Top Co-Authors

Avatar

J. Michael Shipley

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge