Alison Parkin
University of York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alison Parkin.
Journal of Biological Chemistry | 2010
Michael J. Lukey; Alison Parkin; Maxie M. Roessler; Bonnie J. Murphy; Jeffrey Harmer; Tracy Palmer; Frank Sargent; Fraser A. Armstrong
The enterobacterium Escherichia coli synthesizes two H2 uptake enzymes, Hyd-1 and Hyd-2. We show using precise electrochemical kinetic measurements that the properties of Hyd-1 and Hyd-2 contrast strikingly, and may be individually optimized to function under distinct environmental conditions. Hyd-2 is well suited for fast and efficient catalysis in more reducing environments, to the extent that in vitro it behaves as a bidirectional hydrogenase. In contrast, Hyd-1 is active for H2 oxidation under more oxidizing conditions and cannot function in reverse. Importantly, Hyd-1 is O2 tolerant and can oxidize H2 in the presence of air, whereas Hyd-2 is ineffective for H2 oxidation under aerobic conditions. The results have direct relevance for physiological roles of Hyd-1 and Hyd-2, which are expressed in different phases of growth. The properties that we report suggest distinct technological applications of these contrasting enzymes.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Anne Volbeda; Patricia Amara; Claudine Darnault; Jean-Marie Mouesca; Alison Parkin; Maxie M. Roessler; Fraser A. Armstrong; Juan C. Fontecilla-Camps
The crystal structure of the membrane-bound O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli (EcHyd-1) has been solved in three different states: as-isolated, H2-reduced, and chemically oxidized. As very recently reported for similar enzymes from Ralstonia eutropha and Hydrogenovibrio marinus, two supernumerary Cys residues coordinate the proximal [FeS] cluster in EcHyd-1, which lacks one of the inorganic sulfide ligands. We find that the as-isolated, aerobically purified species contains a mixture of at least two conformations for one of the cluster iron ions and Glu76. In one of them, Glu76 and the iron occupy positions that are similar to those found in O2-sensitive [NiFe]-hydrogenases. In the other conformation, this iron binds, besides three sulfur ligands, the amide N from Cys20 and one Oϵ of Glu76. Our calculations show that oxidation of this unique iron generates the high-potential form of the proximal cluster. The structural rearrangement caused by oxidation is confirmed by our H2-reduced and oxidized EcHyd-1 structures. Thus, thanks to the peculiar coordination of the unique iron, the proximal cluster can contribute two successive electrons to secure complete reduction of O2 to H2O at the active site. The two observed conformations of Glu76 are consistent with this residue playing the role of a base to deprotonate the amide moiety of Cys20 upon iron binding and transfer the resulting proton away, thus allowing the second oxidation to be electroneutral. The comparison of our structures also shows the existence of a dynamic chain of water molecules, resulting from O2 reduction, located near the active site.
Journal of the American Chemical Society | 2008
Alison Parkin; Gabrielle Goldet; Christine Cavazza; Juan C. Fontecilla-Camps; Fraser A. Armstrong
Protein film voltammetry studies of the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum show it to be a highly efficient H2 cycling catalyst. In the presence of 100% H2, the ratio of H2 production to H2 oxidation activity is higher than for any conventional [NiFe]-hydrogenases (lacking a selenocysteine ligand) that have been investigated to date. Although traces of O2 (<< 1%) rapidly and completely remove H2 oxidation activity, the enzyme sustains partial activity for H2 production even in the presence of 1% O2 in the atmosphere. That H2 production should be partly allowed, whereas H2 oxidation is not, is explained because the inactive product of O2 attack is reductively reactivated very rapidly, but this requires a potential that is almost as negative as the thermodynamic potential for the 2H(+)/H2 couple. The study provides further encouragement and clues regarding the feasibility of microbial/enzymatic H2 production free from restrictions of anaerobicity.
Journal of the American Chemical Society | 2013
Glyn R. Hemsworth; Edward J. Taylor; Robbert Q. Kim; Rebecca C. Gregory; Sally Lewis; Johan P. Turkenburg; Alison Parkin; Gideon J. Davies; Paul H. Walton
The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61.
Journal of the American Chemical Society | 2009
Oliver Lazarus; Thomas W. Woolerton; Alison Parkin; Michael J. Lukey; Erwin Reisner; Javier Seravalli; Elizabeth Pierce; Stephen W. Ragsdale; Frank Sargent; Fraser A. Armstrong
The water-gas shift (WGS) reaction (CO + H(2)O <==> CO(2) + H(2)) is of major industrial significance in the production of H(2) from hydrocarbon sources. High temperatures are required, typically in excess of 200 degrees C, using d-metal catalysts on oxide supports. In our study the WGS process is separated into two half-cell electrochemical reactions (H(+) reduction and CO oxidation), catalyzed by enzymes attached to a conducting particle. The H(+) reduction reaction is catalyzed by a hydrogenase, Hyd-2, from Escherichia coli, and CO oxidation is catalyzed by a carbon monoxide dehydrogenase (CODH I) from Carboxydothermus hydrogenoformans. This results in a highly efficient heterogeneous catalyst with a turnover frequency, at 30 degrees C, of at least 2.5 s(-1) per minimum functional unit (a CODH/Hyd-2 pair) which is comparable to conventional high-temperature catalysts.
Biochemical Journal | 2014
Lisa Bowman; Lindsey A. Flanagan; Paul K. Fyfe; Alison Parkin; William N. Hunter; Frank Sargent
Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hydro-genase was observed to comprise associated large and small subunits. The structure indicated that His229 from the large subunit was close to the proximal [4Fe–3S] cluster in the small subunit. In addition, His229 was observed to lie close to a buried glutamic acid (Glu73), which is conserved in oxygen-tolerant hydrogenases. His229 and Glu73 of the Hyd-5 large subunit were found to be important in both hydrogen oxidation activity and the oxygen-tolerance mechanism. Substitution of His229 or Glu73 with alanine led to a loss in the ability of Hyd-5 to oxidize hydrogen in air. Furthermore, the H229A variant was found to have lost the overpotential requirement for activity that is always observed with oxygen-tolerant [NiFe]-hydrogenases. It is possible that His229 has a role in stabilizing the super-oxidized form of the proximal cluster in the presence of oxygen, and it is proposed that Glu73could play a supporting role in fine-tuning the chemistry of His229 to enable this function.
FEBS Letters | 2012
Alison Parkin; Lisa Bowman; Maxie M. Roessler; Rosalind A. Davies; Tracy Palmer; Fraser A. Armstrong; Frank Sargent
Salmonella enterica serovar Typhimurium is a Gram negative bacterial pathogen and a common cause of food‐borne illness. Molecular hydrogen has been shown to be a key respiratory electron donor during infection and H2 oxidation can be catalysed by three genetically‐distinct [NiFe] hydrogenases. Of these, hydrogenases‐1 (Hyd‐1) and Hyd‐2 have well‐characterised homologues in Escherichia coli. The third, designated Hyd‐5 here, is peculiar to Salmonella and is expressed under aerobic conditions. In this work, Salmonella was genetically modified to enable the isolation and characterisation of Hyd‐5. Electrochemical analysis established that Hyd‐5 is a H2‐oxidising enzyme that functions in very low levels of H2 and sustains this activity in high levels of O2. In addition, electron paramagnetic resonance spectroscopy of the Hyd‐5 isoenzyme reveals a complex paramagnetic FeS signal at high potentials which is comparable to that observed for other O2‐tolerant respiratory [NiFe] hydrogenases. Taken altogether, Hyd‐5 can be classified as an O2‐tolerant hydrogenase that confers upon Salmonella the ability to use H2 as an electron donor in aerobic respiration.
Angewandte Chemie | 2016
Babatunde O. Okesola; Sindhu K. Suravaram; Alison Parkin; David K. Smith
A hydrogel based on 1,3:2,4-dibenzylidenesorbitol (DBS), modified with acyl hydrazides which extracts gold/silver salts from model waste is reported, with preferential uptake of precious heavy metals over other common metals. Reduction of gold/silver salts occurs spontaneously in the gel to yield metal nanoparticles located on the gel nanofibers. High nanoparticle loadings can be achieved, endowing the gel with electrochemical activity. These hybrid gels exhibit higher conductances than gels doped with carbon nanotubes, and can be used to modify electrode surfaces, enhancing electrocatalysis. We reason this simple, industrially and environmentally relevant approach to conducting materials is of considerable significance.
Biochemical Society Transactions | 2016
Lindsey A. Flanagan; Alison Parkin
Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH.
Journal of the American Chemical Society | 2012
Carina E. Foster; Tobias Krämer; Annemarie F. Wait; Alison Parkin; David P. Jennings; Thomas Happe; John E. McGrady; Fraser A. Armstrong
Formaldehyde-a rapid and reversible inhibitor of hydrogen evolution by [FeFe]-hydrogenases-binds with a strong potential dependence that is almost complementary to that of CO. Whereas exogenous CO binds tightly to the oxidized state known as H(ox) but very weakly to a state two electrons more reduced, formaldehyde interacts most strongly with the latter. Formaldehyde thus intercepts increasingly reduced states of the catalytic cycle, and density functional theory calculations support the proposal that it reacts with the H-cluster directly, most likely targeting an otherwise elusive and highly reactive Fe-hydrido (Fe-H) intermediate.