Alison R. Bentley
National Institute of Agricultural Botany
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alison R. Bentley.
Plant Biotechnology Journal | 2016
Mark O. Winfield; Alexandra M. Allen; Amanda J. Burridge; Gary L. A. Barker; Harriet R. Benbow; Paul A. Wilkinson; Jane A. Coghill; Christy Waterfall; Alessandro Davassi; Geoff Scopes; Ali Pirani; Teresa Webster; Fiona Brew; Claire Bloor; Julie King; Claire West; Simon Griffiths; I. P. King; Alison R. Bentley; Keith J. Edwards
Summary In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheats secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra‐high‐density Axiom® genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.
Frontiers in Plant Science | 2015
C. Kole; Mehanathan Muthamilarasan; Robert J Henry; David Edwards; Rishu Sharma; Michael T. Abberton; Jacqueline Batley; Alison R. Bentley; Michael Blakeney; John A. Bryant; Hongwei Cai; M. Cakir; Leland J. Cseke; James Cockram; Antonio Costa de Oliveira; Ciro de Pace; Hannes Dempewolf; Shelby Ellison; Paul Gepts; Andy Greenland; Anthony Hall; Kiyosumi Hori; Stephen Hughes; Michael W. Humphreys; Massimo Iorizzo; Abdelbagi M. Ismail; Athole H. Marshall; Sean Mayes; Henry T. Nguyen; Francis C. Ogbonnaya
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.
Plant Biotechnology Journal | 2016
Michael T. Abberton; Jacqueline Batley; Alison R. Bentley; John A. Bryant; Hongwei Cai; James Cockram; Antonio Costa de Oliveira; Leland J. Cseke; Hannes Dempewolf; Ciro de Pace; David Edwards; Paul Gepts; Andy Greenland; Anthony E. Hall; Robert J Henry; Kiyosumi Hori; Glen Thomas Howe; Stephen G. Hughes; Michael W. Humphreys; David A. Lightfoot; Athole H. Marshall; Sean Mayes; Henry T. Nguyen; Francis C. Ogbonnaya; Rodomiro Ortiz; Andrew H. Paterson; Roberto Tuberosa; Babu Valliyodan; Rajeev K. Varshney; Masahiro Yano
Summary Agriculture is now facing the ‘perfect storm’ of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic‐assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.
Plant Biotechnology Journal | 2017
Alexandra M. Allen; Mark O. Winfield; Amanda J. Burridge; Rowena C Downie; Harriet L Benbow; Gary L. A. Barker; Paul A. Wilkinson; Jane A. Coghill; Christy Waterfall; Alessandro Davassi; Geoff Scopes; Ali Pirani; Teresa Webster; Fiona Brew; Claire Bloor; Simon Griffiths; Alison R. Bentley; Mark Alda; Peter Jack; Andrew Phillips; Keith J. Edwards
Summary Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism‐based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high‐density Affymetrix Axiom® genotyping array (the Wheat Breeders’ Array), in a high‐throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders’ Array is also suitable for generating high‐density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site ‘CerealsDB’.
Frontiers in Plant Science | 2016
Anyela Camargo; Richard Mott; Keith A. Gardner; Ian Mackay; Fiona Corke; John H. Doonan; Jan T. Kim; Alison R. Bentley
The appropriate timing of developmental transitions is critical for adapting many crops to their local climatic conditions. Therefore, understanding the genetic basis of different aspects of phenology could be useful in highlighting mechanisms underpinning adaptation, with implications in breeding for climate change. For bread wheat (Triticum aestivum), the transition from vegetative to reproductive growth, the start and rate of leaf senescence and the relative timing of different stages of flowering and grain filling all contribute to plant performance. In this study we screened under Smart house conditions a large, multi-founder “NIAB elite MAGIC” wheat population, to evaluate the genetic elements that influence the timing of developmental stages in European elite varieties. This panel of recombinant inbred lines was derived from eight parents that are or recently have been grown commercially in the UK and Northern Europe. We undertook a detailed temporal phenotypic analysis under Smart house conditions of the population and its parents, to try to identify known or novel Quantitative Trait Loci associated with variation in the timing of key phenological stages in senescence. This analysis resulted in the detection of QTL interactions with novel traits such the time between “half of ear emergence above flag leaf ligule” and the onset of senescence at the flag leaf as well as traits associated with plant morphology such as stem height. In addition, strong correlations between several traits and the onset of senescence of the flag leaf were identified. This work establishes the value of systematically phenotyping genetically unstructured populations to reveal the genetic architecture underlying morphological variation in commercial wheat.
Frontiers in Plant Science | 2016
Dario Novoselović; Alison R. Bentley; Ruđer Šimek; Krešimir Dvojković; Mark E. Sorrells; Nicolas Gosman; Richard Horsnell; Georg Drezner; Zlatko Šatović
Narrowing the genetic base available for future genetic progress is a major concern to plant breeders. In order to avoid this, strategies to characterize and protect genetic diversity in regional breeding pools are required. In this study, 89 winter wheat cultivars released in Croatia between 1936 and 2006 were genotyped using 1,229 DArT (diversity array technology) markers to assess the diversity and population structure. In order to place Croatian breeding pool (CBP) in a European context, Croatian wheat cultivars were compared to 523 European cultivars from seven countries using a total of 166 common DArT markers. The results show higher genetic diversity in the wheat breeding pool from Central Europe (CE) as compared to that from Northern and Western European (NWE) countries. The most of the genetic diversity was attributable to the differences among cultivars within countries. When the geographical criterion (CE vs. NWE) was applied, highly significant difference between regions was obtained that accounted for 16.19% of the total variance, revealing that the CBP represents genetic variation not currently captured in elite European wheat. The current study emphasizes the important contribution made by plant breeders to maintaining wheat genetic diversity and suggests that regional breeding is essential to the maintenance of this diversity. The usefulness of open-access wheat datasets is also highlighted.
Applied and Translational Genomics | 2016
Olufunmilayo Ladejobi; James Elderfield; Keith A. Gardner; R. Chris Gaynor; John Hickey; Julian M. Hibberd; Ian Mackay; Alison R. Bentley
Most agriculturally significant crop traits are quantitatively inherited which limits the ease and efficiency of trait dissection. Multi-parent populations overcome the limitations of traditional trait mapping and offer new potential to accurately define the genetic basis of complex crop traits. The increasing popularity and use of nested association mapping (NAM) and multi-parent advanced generation intercross (MAGIC) populations raises questions about the optimal design and allocation of resources in their creation. In this paper we review strategies for the creation of multi-parent populations and describe two complementary in silico studies addressing the design and construction of NAM and MAGIC populations. The first simulates the selection of diverse founder parents and the second the influence of multi-parent crossing schemes (and number of founders) on haplotype creation and diversity. We present and apply two open software resources to simulate alternate strategies for the development of multi-parent populations.
Frontiers in Plant Science | 2016
Joanna Halliwell; Philippa Borrill; Anna Gordon; Radoslaw M. Kowalczyk; Marina L. Pagano; Benedetta Saccomanno; Alison R. Bentley; Cristobal Uauy; James Cockram
To date, a small number of major flowering time loci have been identified in the related Triticeae crops, bread wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare). Natural genetic variants at these loci result in major phenotypic changes which have adapted crops to the novel environments encountered during the spread of agriculture. The polyploid nature of bread and durum wheat means that major flowering time loci in which recessive alleles confer adaptive advantage in related diploid species have not been readily identified. One such example is the PPD-H2 flowering time locus encoded by FLOWERING LOCUS T 3 (HvFT3) in the diploid crop barley, for which recessive mutant alleles confer delayed flowering under short day (SD) photoperiods. In autumn-sown barley, such alleles aid the repression of flowering over the winter, which help prevent the development of cold-sensitive floral organs until the onset of inductive long day (LD) photoperiods the following spring. While the identification of orthologous loci in wheat could provide breeders with alternative mechanisms to fine tune flowering time, systematic identification of wheat orthologs of HvFT3 has not been reported. Here, we characterize the FT gene families in six Poaceae species, identifying novel members in all taxa investigated, as well as FT3 homoeologs from the A, B and D genomes of hexaploid (TaFT3) and tetraploid wheat. Sequence analysis shows TaFT3 homoeologs display high similarity to the HvFT3 coding region (95–96%) and predicted protein (96–97%), with conservation of intron/exon structure across the five cereal species investigated. Genetic mapping and comparative analyses in hexaploid and tetraploid wheat find TaFT3 homoeologs map to the long arms of the group 1 chromosomes, collinear to HvFT3 in barley and FT3 orthologs in rice, foxtail millet and brachypodium. Genome-specific expression analyses show FT3 homoeologs in tetraploid and hexaploid wheat are upregulated under SD photoperiods, but not under LDs, analogous to the expression of HvFT3. Collectively, these results indicate that functional wheat orthologs of HvFT3 have been identified. The molecular resources generated here provide the foundation for engineering a novel major flowering time locus in wheat using forward or reverse genetics approaches.
PLOS ONE | 2018
John Clifton-Brown; Hannah Senior; Sarah Jane Purdy; Richard Horsnell; Bernd Lankamp; Ann-Katrin Müennekhoff; Daljit Virk; Estelle Guillemois; Vera Chetty; Alan Cookson; Sarah Girdwood; Gabi Clifton-Brown; Mei Lie Mc Tan; Danny Awty-Carroll; Alison R. Bentley
Plant breeding is achieved through the controlled self- or cross-pollination of individuals and typically involves isolation of floral parts from selected parental plants. Paper, cellulose or synthetic materials are used to avoid self pollination or cross contamination. Low seed set limits the rate of breeding progress and increases costs. We hypothesized that a novel ‘non-woven’ fabric optimal for both pollination and seed set in multiple plant species could be developed. After determining the baseline pollen characteristics and usage requirements we established iterative three phase development and biological testing. This determined (1) that white fabric gave superior seed return and informed the (2) development of three non-woven materials using different fibre and layering techniques. We tested their performance in selfing and hybridisation experiments recording differences in performance by material type within species. Finally we (3) developed further advanced fabrics with increased air permeability and tested biological performance. An interaction between material type and species was observed and environmental decoupling investigated, showing that the non-woven fabrics had superior water vapour transmission and temperature regulation compared to controls. Overall, non-woven fabrics outperformed existing materials for both pollination and seed set and we found that different materials can optimize species-specific, rather than species-generic performance.
Frontiers in Plant Science | 2018
Anyela V. Camargo; Ian Mackay; Richard Mott; Jiwan Han; John H. Doonan; Karen Louise Askew; Fiona Corke; Kevin Williams; Alison R. Bentley
In crop genetic studies, the mapping of longitudinal data describing the spatio-temporal nature of agronomic traits can elucidate the factors influencing their formation and development. Here, we combine the mapping power and precision of a MAGIC wheat population with robust computational methods to track the spatio- temporal dynamics of traits associated with wheat performance. NIAB MAGIC lines were phenotyped throughout their lifecycle under smart house conditions. Growth models were fitted to the data describing growth trajectories of plant area, height, water use and senescence and fitted parameters were mapped as quantitative traits. Trait data from single time points were also mapped to determine when and how markers became and ceased to be significant. Assessment of temporal dynamics allowed the identification of marker-trait associations and tracking of trait development against the genetic contribution of key markers. We establish a data-driven approach for understanding complex agronomic traits and accelerate research in plant breeding.