Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alistair Miles is active.

Publication


Featured researches published by Alistair Miles.


Nature Genetics | 2013

Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

Olivo Miotto; Jacob Almagro-Garcia; Magnus Manske; Bronwyn MacInnis; Susana Campino; Kirk A. Rockett; Chanaki Amaratunga; Pharath Lim; Seila Suon; Sokunthea Sreng; Jennifer M. Anderson; Socheat Duong; Chea Nguon; Char Meng Chuor; David L. Saunders; Youry Se; Chantap Lon; Mark M. Fukuda; Lucas Amenga-Etego; Abraham Hodgson; Victor Asoala; Mallika Imwong; Shannon Takala-Harrison; François Nosten; Xin-Zhuan Su; Pascal Ringwald; Frédéric Ariey; Christiane Dolecek; Tran Tinh Hien; Maciej F. Boni

We describe an analysis of genome variation in 825 P. falciparum samples from Asia and Africa that identifies an unusual pattern of parasite population structure at the epicenter of artemisinin resistance in western Cambodia. Within this relatively small geographic area, we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalog of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in transporter proteins and DNA mismatch repair proteins. These data provide a population-level genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist in its elimination.


PLOS Computational Biology | 2009

Adventures in Semantic Publishing: Exemplar Semantic Enhancements of a Research Article

David M. Shotton; Katie Portwin; Graham Klyne; Alistair Miles

Scientific innovation depends on finding, integrating, and re-using the products of previous research. Here we explore how recent developments in Web technology, particularly those related to the publication of data and metadata, might assist that process by providing semantic enhancements to journal articles within the mainstream process of scholarly journal publishing. We exemplify this by describing semantic enhancements we have made to a recent biomedical research article taken from PLoS Neglected Tropical Diseases, providing enrichment to its content and increased access to datasets within it. These semantic enhancements include provision of live DOIs and hyperlinks; semantic markup of textual terms, with links to relevant third-party information resources; interactive figures; a re-orderable reference list; a document summary containing a study summary, a tag cloud, and a citation analysis; and two novel types of semantic enrichment: the first, a Supporting Claims Tooltip to permit “Citations in Context”, and the second, Tag Trees that bring together semantically related terms. In addition, we have published downloadable spreadsheets containing data from within tables and figures, have enriched these with provenance information, and have demonstrated various types of data fusion (mashups) with results from other research articles and with Google Maps. We have also published machine-readable RDF metadata both about the article and about the references it cites, for which we developed a Citation Typing Ontology, CiTO (http://purl.org/net/cito/). The enhanced article, which is available at http://dx.doi.org/10.1371/journal.pntd.0000228.x001, presents a compelling existence proof of the possibilities of semantic publication. We hope the showcase of examples and ideas it contains, described in this paper, will excite the imaginations of researchers and publishers, stimulating them to explore the possibilities of semantic publishing for their own research articles, and thereby break down present barriers to the discovery and re-use of information within traditional modes of scholarly communication.


Nature Genetics | 2016

Genomic analysis of local variation and recent evolution in Plasmodium vivax

Richard D. Pearson; Roberto Amato; Sarah Auburn; Olivo Miotto; Jacob Almagro-Garcia; Chanaki Amaratunga; Seila Suon; Sivanna Mao; Rintis Noviyanti; Hidayat Trimarsanto; Jutta Marfurt; Nicholas M. Anstey; Timothy William; Maciej F. Boni; Christiane Dolecek; Hien Tinh Tran; Nicholas J. White; Pascal Michon; Peter Siba; Livingstone Tavul; Gabrielle Harrison; Alyssa E. Barry; Ivo Mueller; Marcelo U. Ferreira; Nadira D. Karunaweera; Milijaona Randrianarivelojosia; Qi Gao; Christina Hubbart; Lee Hart; Ben Jeffery

The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.


Briefings in Bioinformatics | 2009

Linked data and provenance in biological data webs

Jun Zhao; Alistair Miles; Graham Klyne; David M. Shotton

The Web is now being used as a platform for publishing and linking life science data. The Webs linking architecture can be exploited to join heterogeneous data from multiple sources. However, as data are frequently being updated in a decentralized environment, provenance information becomes critical to providing reliable and trustworthy services to scientists. This article presents design patterns for representing and querying provenance information relating to mapping links between heterogeneous data from sources in the domain of functional genomics. We illustrate the use of named resource description framework (RDF) graphs at different levels of granularity to make provenance assertions about linked data, and demonstrate that these assertions are sufficient to support requirements including data currency, integrity, evidential support and historical queries.


Genome Research | 2016

Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum

Alistair Miles; Zamin Iqbal; Paul Vauterin; Richard G. Pearson; Susana Campino; Michel Theron; Kelda Gould; Daniel Mead; Eleanor Drury; John D. O'Brien; Valentin Ruano Rubio; Bronwyn MacInnis; Jonathan M. Mwangi; Upeka Samarakoon; Lisa C. Ranford-Cartwright; Michael T. Ferdig; Karen Hayton; Xin-Zhuan Su; Thomas E. Wellems; Julian C. Rayner; Gil McVean; Dominic P. Kwiatkowski

The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of deep sequencing data on parents and progeny from genetic crosses, which has enabled us to perform the first genome-wide, integrated analysis of SNP, indel and complex polymorphisms, using Mendelian error rates as an indicator of genotypic accuracy. These data reveal that indels are exceptionally abundant, being more common than SNPs and thus the dominant mode of polymorphism within the core genome. We use the high density of SNP and indel markers to analyze patterns of meiotic recombination, confirming a high rate of crossover events and providing the first estimates for the rate of non-crossover events and the length of conversion tracts. We observe several instances of meiotic recombination within copy number variants associated with drug resistance, demonstrating a mechanism whereby fitness costs associated with resistance mutations could be compensated and greater phenotypic plasticity could be acquired.


Journal of Web Semantics | 2013

Ontology paper: Key choices in the design of Simple Knowledge Organization System (SKOS)

Thomas Baker; Sean Bechhofer; Antoine Isaac; Alistair Miles; Guus Schreiber; Ed Summers

A technique for converting Library of Congress Subject Headings MARCXML to Simple Knowledge Organization System (SKOS) RDF is described. Strengths of the SKOS vocabulary are highlighted, as well as possible points for extension, and the integration of other semantic web vocabularies such as Dublin Core. An application for making the vocabulary available as linked-data on the Web is also described.


Journal of Biomedical Informatics | 2010

OpenFlyData: An exemplar data web integrating gene expression data on the fruit fly Drosophila melanogaster

Alistair Miles; Jun Zhao; Graham Klyne; Helen White-Cooper; David M. Shotton

MOTIVATION Integrating heterogeneous data across distributed sources is a major requirement for in silico bioinformatics supporting translational research. For example, genome-scale data on patterns of gene expression in the fruit fly Drosophila melanogaster are widely used in functional genomic studies in many organisms to inform candidate gene selection and validate experimental results. However, current data integration solutions tend to be heavy weight, and require significant initial and ongoing investment of effort. Development of a common Web-based data integration infrastructure (a.k.a. data web), using Semantic Web standards, promises to alleviate these difficulties, but little is known about the feasibility, costs, risks or practical means of migrating to such an infrastructure. RESULTS We describe the development of OpenFlyData, a proof-of-concept system integrating gene expression data on D. melanogaster, combining Semantic Web standards with light-weight approaches to Web programming based on Web 2.0 design patterns. To support researchers designing and validating functional genomic studies, OpenFlyData includes user-facing search applications providing intuitive access to and comparison of gene expression data from FlyAtlas, the BDGP in situ database, and FlyTED, using data from FlyBase to expand and disambiguate gene names. OpenFlyDatas services are also openly accessible, and are available for reuse by other bioinformaticians and application developers. Semi-automated methods and tools were developed to support labour- and knowledge-intensive tasks involved in deploying SPARQL services. These include methods for generating ontologies and relational-to-RDF mappings for relational databases, which we illustrate using the FlyBase Chado database schema; and methods for mapping gene identifiers between databases. The advantages of using Semantic Web standards for biomedical data integration are discussed, as are open issues. In particular, although the performance of open source SPARQL implementations is sufficient to query gene expression data directly from user-facing applications such as Web-based data fusions (a.k.a. mashups), we found open SPARQL endpoints to be vulnerable to denial-of-service-type problems, which must be mitigated to ensure reliability of services based on this standard. These results are relevant to data integration activities in translational bioinformatics. AVAILABILITY The gene expression search applications and SPARQL endpoints developed for OpenFlyData are deployed at http://openflydata.org. FlyUI, a library of JavaScript widgets providing re-usable user-interface components for Drosophila gene expression data, is available at http://flyui.googlecode.com. Software and ontologies to support transformation of data from FlyBase, FlyAtlas, BDGP and FlyTED to RDF are available at http://openflydata.googlecode.com. SPARQLite, an implementation of the SPARQL protocol, is available at http://sparqlite.googlecode.com. All software is provided under the GPL version 3 open source license.


PLOS ONE | 2014

A Genome Wide Association Study of Plasmodium falciparum Susceptibility to 22 Antimalarial Drugs in Kenya

Jason Patrick Wendler; John Okombo; Roberto Amato; Olivo Miotto; Steven M. Kiara; Leah Mwai; Lewa Pole; J. R. O'Brien; Magnus Manske; Dan Alcock; Eleanor Drury; Mandy Sanders; Samuel O. Oyola; Cinzia Malangone; Dushyanth Jyothi; Alistair Miles; Kirk A. Rockett; Bronwyn MacInnis; Kevin Marsh; Philip Bejon; Alexis Nzila; Dominic P. Kwiatkowski

Background Drug resistance remains a chief concern for malaria control. In order to determine the genetic markers of drug resistant parasites, we tested the genome-wide associations (GWA) of sequence-based genotypes from 35 Kenyan P. falciparum parasites with the activities of 22 antimalarial drugs. Methods and Principal Findings Parasites isolated from children with acute febrile malaria were adapted to culture, and sensitivity was determined by in vitro growth in the presence of anti-malarial drugs. Parasites were genotyped using whole genome sequencing techniques. Associations between 6250 single nucleotide polymorphisms (SNPs) and resistance to individual anti-malarial agents were determined, with false discovery rate adjustment for multiple hypothesis testing. We identified expected associations in the pfcrt region with chloroquine (CQ) activity, and other novel loci associated with amodiaquine, quinazoline, and quinine activities. Signals for CQ and primaquine (PQ) overlap in and around pfcrt, and interestingly the phenotypes are inversely related for these two drugs. We catalog the variation in dhfr, dhps, mdr1, nhe, and crt, including novel SNPs, and confirm the presence of a dhfr-164L quadruple mutant in coastal Kenya. Mutations implicated in sulfadoxine-pyrimethamine resistance are at or near fixation in this sample set. Conclusions/Significance Sequence-based GWA studies are powerful tools for phenotypic association tests. Using this approach on falciparum parasites from coastal Kenya we identified known and previously unreported genes associated with phenotypic resistance to anti-malarial drugs, and observe in high-resolution haplotype visualizations a possible signature of an inverse selective relationship between CQ and PQ.


DNA Research | 2014

Optimized whole-genome amplification strategy for extremely AT-biased template.

Samuel O. Oyola; Magnus Manske; Susana Campino; Antoine Claessens; William L. Hamilton; Mihir Kekre; Eleanor Drury; Daniel Mead; Yong Xi Gu; Alistair Miles; Bronwyn MacInnis; Chris Newbold; Matthew Berriman; Dominic P. Kwiatkowski

Pathogen genome sequencing directly from clinical samples is quickly gaining importance in genetic and medical research studies. However, low DNA yield from blood-borne pathogens is often a limiting factor. The problem worsens in extremely base-biased genomes such as the AT-rich Plasmodium falciparum. We present a strategy for whole-genome amplification (WGA) of low-yield samples from P. falciparum prior to short-read sequencing. We have developed WGA conditions that incorporate tetramethylammonium chloride for improved amplification and coverage of AT-rich regions of the genome. We show that this method reduces amplification bias and chimera formation. Our data show that this method is suitable for as low as 10 pg input DNA, and offers the possibility of sequencing the parasite genome from small blood samples.


Nature | 2017

Natural diversity of the malaria vector Anopheles gambiae

Alistair Miles; Nicholas J Harding; Giordano Botta; Chris Clarkson; Tiago Antao; Krzysztof Kozak; Daniel R. Schrider; Andrew D. Kern; Seth Redmond; Igor V. Sharakhov; Richard D. Pearson; Christina M. Bergey; Michael Fontaine; Arlete Troco; Abdoulaye Diabaté; Carlo Costantini; Kyanne Rohatgi; Nohal Elissa; Boubacar Coulibaly; Joao Dinis; Janet Midega; Charles M. Mbogo; Henry Mawejje; Jim Stalker; Kirk A. Rockett; Eleanor Drury; Dan Mead; Anna Jeffreys; Christina Hubbart; Kate Rowlands

The sustainability of malaria control in Africa is threatened by rising levels of insecticide resistance, and new tools to prevent malaria transmission are urgently needed. To gain a better understanding of the mosquito populations that transmit malaria, we sequenced the genomes of 765 wild specimens of Anopheles gambiae and Anopheles coluzzii sampled from 15 locations across Africa. The data reveal high levels of genetic diversity, with over 50 million single nucleotide polymorphisms across the 230 Mbp genome. We observe complex patterns of population structure and marked variations in local population size, some of which may be due at least in part to malaria control interventions. Insecticide resistance genes show strong signatures of recent selection associated with multiple independent mutations spreading over large geographical distances and between species. The genetic variability of natural populations substantially reduces the target space for novel gene-drive strategies for mosquito control. This large dataset provides a foundation for tracking the emergence and spread of insecticide resistance and developing new vector control tools.

Collaboration


Dive into the Alistair Miles's collaboration.

Top Co-Authors

Avatar

Dominic P. Kwiatkowski

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Eleanor Drury

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Daniel Mead

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Amato

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher S. Clarkson

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge