Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alistair R. Evans is active.

Publication


Featured researches published by Alistair R. Evans.


Nature | 2007

High-level similarity of dentitions in carnivorans and rodents.

Alistair R. Evans; Gregory P. Wilson; Mikael Fortelius; Jukka Jernvall

The study of mammalian evolution depends greatly on understanding the evolution of teeth and the relationship of tooth shape to diet. Links between gross tooth shape, function and diet have been proposed since antiquity, stretching from Aristotle to Cuvier, Owen and Osborn. So far, however, the possibilities for exhaustive, quantitative comparisons between greatly different tooth shapes have been limited. Cat teeth and mouse teeth, for example, are fundamentally distinct in shape and structure as a result of independent evolutionary change over tens of millions of years. There is difficulty in establishing homology between their tooth components or in summarizing their tooth shapes, yet both carnivorans and rodents possess a comparable spectrum of dietary specializations from animals to plants. Here we introduce homology-free techniques to measure the phenotypic complexity of the three-dimensional shape of tooth crowns. In our geographic information systems (GIS) analysis of 441 teeth from 81 species of carnivorans and rodents, we show that the surface complexity of tooth crowns directly reflects the foods they consume. Moreover, the absolute values of dental complexity for individual dietary classes correspond between carnivorans and rodents, illustrating a high-level similarity between overall tooth shapes despite a lack of low-level similarity of specific tooth components. These results suggest that scale-independent forces have determined the high-level dental shape in lineages that are widely divergent in size, ecology and life history. This link between diet and phenotype will be useful for inferring the ecology of extinct species and illustrates the potential of fast-throughput, high-level analysis of the phenotype.


Nature | 2007

Predicting evolutionary patterns of mammalian teeth from development

Kathryn Kavanagh; Alistair R. Evans; Jukka Jernvall

One motivation in the study of development is the discovery of mechanisms that may guide evolutionary change. Here we report how development governs relative size and number of cheek teeth, or molars, in the mouse. We constructed an inhibitory cascade model by experimentally uncovering the activator–inhibitor logic of sequential tooth development. The inhibitory cascade acts as a ratchet that determines molar size differences along the jaw, one effect being that the second molar always makes up one-third of total molar area. By using a macroevolutionary test, we demonstrate the success of the model in predicting dentition patterns found among murine rodent species with various diets, thereby providing an example of ecologically driven evolution along a developmentally favoured trajectory. In general, our work demonstrates how to construct and test developmental rules with evolutionary predictability in natural systems.


Science | 2010

The Evolution of Maximum Body Size of Terrestrial Mammals

Felisa A. Smith; Alison G. Boyer; James H. Brown; Daniel P. Costa; Tamar Dayan; S. K. Morgan Ernest; Alistair R. Evans; Mikael Fortelius; John L. Gittleman; Marcus J. Hamilton; Larisa E. Harding; Kari Lintulaakso; S. Kathleen Lyons; Christy M. McCain; Jordan G. Okie; Juha Saarinen; Richard M. Sibly; Patrick R. Stephens; Jessica M. Theodor; Mark D. Uhen

How Mammals Grew in Size Mammals diversified greatly after the end-Cretaceous extinction, which eliminated the dominant land animals (dinosaurs). Smith et al. (p. 1216) examined how the maximum size of mammals increased during their radiation in each continent. Overall, mammal size increased rapidly, then leveled off after about 25 million years. This pattern holds true on most of the continents—even though data are sparse for South America—and implies that mammals grew to fill available niches before other environmental and biological limits took hold. Maximum mammal size increased at the beginning of the Cenozoic, then leveled off after about 25 million years. The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.


Nature | 2012

Adaptive radiation of multituberculate mammals before the extinction of dinosaurs

Gregory P. Wilson; Alistair R. Evans; Ian J. Corfe; Peter Smits; Mikael Fortelius; Jukka Jernvall

The Cretaceous–Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous–Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous–Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous–Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous–Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous–Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The maximum rate of mammal evolution

Alistair R. Evans; David R. Jones; Alison G. Boyer; James H. Brown; Daniel P. Costa; S. K. Morgan Ernest; Erich M. G. Fitzgerald; Mikael Fortelius; John L. Gittleman; Marcus J. Hamilton; Larisa E. Harding; Kari Lintulaakso; S. Kathleen Lyons; Jordan G. Okie; Juha Saarinen; Richard M. Sibly; Felisa A. Smith; Patrick R. Stephens; Jessica M. Theodor; Mark D. Uhen

How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.


American Journal of Physical Anthropology | 2010

Evidence of dietary differentiation among late Paleocene-early Eocene plesiadapids (Mammalia, primates).

Doug M. Boyer; Alistair R. Evans; Jukka Jernvall

Plesiadapis cookei is an extinct relative of extant euarchontans (primates, dermopterans; scandentians), which lived in North America during the late Paleocene. P. cookei body mass has been estimated to be approximately 2.2 kg, making it large compared with other species of its genus from North America, but similar to some from Europe. In particular, size as well as dental form similarities to P. russelli have been noted. However, it is thought that P. russelli evolved from P. tricuspidens, and into Platychoerops daubrei. Dental similarities among P. cookei, P. russelli, and P. daubrei have been hypothesized to reflect a more folivorous diet than utilized by P. tricuspidens. Here we test the hypothesis that P. cookei is more dietarily specialized than P. tricuspidens by quantifying functionally significant aspects of molar, premolar, and incisor forms. Casts of M(2)s and P(4)s of P. tricuspidens, P. cookei, and P. daubrei were microCT-scanned. We measured the relief index and/or the complexity from surface reconstructions of scans. Results show that P. cookei has higher M(2) relief and complexity than P. tricuspidens; P. daubrei exhibits the highest relief and complexity. Similarly, P. cookei has a more complex P(4) than P. tricuspidens, whereas that of P. daubrei exhibits the highest complexity. Finally, the I(1) of P. cookei resembles more the incisor of P. daubrei than that of P. tricuspidens. Because high relief and complexity of dentitions are related to fibrous plant diets in living mammals, these findings support the hypothesis that previously identified similarities among P. cookei, P. russelli and P. daubrei reflect a folivorous diet.


Nature | 2014

Replaying evolutionary transitions from the dental fossil record

Enni Harjunmaa; Kerstin Seidel; Teemu J. Häkkinen; Elodie Renvoisé; Ian J. Corfe; Aki Kallonen; Zhaoqun Zhang; Alistair R. Evans; Marja L. Mikkola; Isaac Salazar-Ciudad; Ophir D. Klein; Jukka Jernvall

The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character inter-dependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character-state transitions used in evolutionary studies.


Evolution | 2009

EVOLUTION OF MAMMAL TOOTH PATTERNS: NEW INSIGHTS FROM A DEVELOPMENTAL PREDICTION MODEL

Elodie Renvoisé; Alistair R. Evans; Ahmad Jebrane; Catherine Labruère; Rémi Laffont; Sophie Montuire

The study of mammalian evolution is often based on insights into the evolution of teeth. Developmental studies may attempt to address the mechanisms that guide evolutionary changes. One example is the new developmental model proposed by Kavanagh et al. (2007), which provides a high-level testable model to predict mammalian tooth evolution. It is constructed on an inhibitory cascade model based on a dynamic balance of activators and inhibitors, regulating differences in molar size along the lower dental row. Nevertheless, molar sizes in some mammals differ from this inhibitory cascade model, in particular in voles. The aim of this study is to point out arvicoline and murine differences within this model and to suggest an alternative model. Here we demonstrate that the inhibitory cascade is not followed, due to the arvicolines greatly elongated first lower molar. We broaden the scope of the macroevolutionary model by projecting a time scale onto the developmental model. We demonstrate that arvicoline evolution is rather characterized by a large gap from the oldest vole to more recent genera, with the rapid acquisition of a large first lower molar contemporaneous to their radiation. Our study provides alternative evolutionary hypotheses for mammals with different trajectories of development.


Polar Biology | 2013

Leopard seals (Hydrurga leptonyx) use suction and filter feeding when hunting small prey underwater

David P. Hocking; Alistair R. Evans; Erich M. G. Fitzgerald

Leopard seals (Hydrurgaleptonyx) are unusual among apex predators in that they feed at both the top and near the bottom of marine food webs; they capture and consume marine amniotes (seals and penguins) as well as krill. This is thought to be achieved with their unusual dentition: rostral caniniform teeth function to grip large prey and tricuspate postcanines function to sieve krill. The use of canine teeth is known, yet until now, the function of the postcanines has never been documented. Here, we present the first direct observations of filter feeding in leopard seals. Suction was used to draw small prey into the mouth followed by expulsion of ingested seawater through the sieve formed by postcanine teeth. Individuals show abrasive wear on canines and incisors, but not postcanines. This suggests that postcanines are not systematically used for piercing prey during macrophagous feeding, confirming that the postcanines primarily serve a sieving function. Rather than being less efficient at feeding as a result of its polarized diet, the leopard seal is well adapted towards two disparate feeding modes.


Australian Journal of Zoology | 2005

Biomechanical properties of insects in relation to insectivory: cuticle thickness as an indicator of insect 'hardness' and 'intractability'

Alistair R. Evans; Gordon D. Sanson

The concept of ‘hardness’ has long been used to describe the biomechanical properties of the diet of many animals. However, due to the lack of a consistent definition, and the multitude of uses to which the term has been put, the use of the term ‘intractability’ has been advocated here to represent the extent to which the structural strength, stiffness and toughness are increased in a foodstuff. The thickness of the cuticle of an insect was a good measure of the intractability of cuticle. The tremendous advantage of the use of cuticle thickness as a measure of the biomechanical properties of invertebrates means that the dietary properties of a living insectivore can be directly quantified according to the thickness of the cuticle in its faeces. The quantitative measurement of intractability obtained through this technique can be used in correlations with adaptations of the masticatory apparatus, including tooth and skull morphology, as well as more general considerations of ecology. This is a major advance on previous measures of the biomechanical properties of insectivore diets, and may represent the best technique of any dietary group in assessing the properties of its diet.

Collaboration


Dive into the Alistair R. Evans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erich M. G. Fitzgerald

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erich M. G. Fitzgerald

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge