Aliuska Morales Helguera
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aliuska Morales Helguera.
Current Topics in Medicinal Chemistry | 2008
Aliuska Morales Helguera; Robert D. Combes; Maykel Pérez González; M. Natália D. S. Cordeiro
In order to minimize expensive drug failures, is essential to determine potential activity, toxicity and ADME problems as early as possible. In view of the large libraries of compounds now being handled by combinatorial chemistry and high-throughput screening, identification of potential drug is advisable even before synthesis using computational techniques such as QSAR modeling. A great number of in silico approaches to activity/toxicity prediction have been described in the literature, using molecular 0D, 1D, 2D and 3D descriptors. Also these descriptors have been implemented in available computational tools such as DRAGON, SYBYL and CODESSA for it easy use. However, many of them only have been used to explain a few prediction problems. This review attempts to summarize present knowledge related to the computational biological activity prediction based in 2D molecular descriptors implemented in the DRAGON software. These applications rely on new computational techniques such as virtual combinatorial synthesis, virtual computational screening or inverse. Several topological molecular descriptors applications are described, ranging from simple topological indices to topological indices derived from matrices weighted with atomic and bond properties. Their advantages, limitations and its possibilities in drug design are also discussed.
Journal of Chemical Information and Modeling | 2011
Alfonso Pérez-Garrido; Aliuska Morales Helguera; Fernanda Borges; M. Natália D. S. Cordeiro; Virginia Rivero; Amalio Garrido Escudero
There are several indices that provide an indication of different types on the performance of QSAR classification models, being the area under a Receiver Operating Characteristic (ROC) curve still the most powerful test to overall assess such performance. All ROC related parameters can be calculated for both the training and test sets, but, nevertheless, neither of them constitutes an absolute indicator of the classification performance by themselves. Moreover, one of the biggest drawbacks is the computing time needed to obtain the area under the ROC curve, which naturally slows down any calculation algorithm. The present study proposes two new parameters based on distances in a ROC curve for the selection of classification models with an appropriate balance in both training and test sets, namely the following: the ROC graph Euclidean distance (ROCED) and the ROC graph Euclidean distance corrected with Fitness Function (FIT(λ)) (ROCFIT). The behavior of these indices was observed through the study on the mutagenicity for four genotoxicity end points of a number of nonaromatic halogenated derivatives. It was found that the ROCED parameter gets a better balance between sensitivity and specificity for both the training and prediction sets than other indices such as the Matthews correlation coefficient, the Wilks lambda, or parameters like the area under the ROC curve. However, when the ROCED parameter was used, the follow-on linear discriminant models showed the lower statistical significance. But the other parameter, ROCFIT, maintains the ROCED capabilities while improving the significance of the models due to the inclusion of FIT(λ).
Chemical Research in Toxicology | 2008
Aliuska Morales Helguera; Maykel Pérez González; Maria Natália Dias Soeiro Cordeiro; Miguel Ángel Cabrera Pérez
Chemical carcinogenicity is of primary interest because it drives much of the current regulatory actions regarding new and existing chemicals and conventional experimental tests take around 3 years to design, conduct, and interpret in addition to costing hundreds of millions of dollars, millions of skilled personnel hours, and millions of animal lives. Thus, theoretical approaches such as the one proposed here, quantitative structure-activity relationship (QSAR), are increasingly used for assessing the risks of environmental chemicals, since they can markedly reduce costs, avoid animal testing, and speed up policy decisions. This paper reports a QSAR study based on the TOPological Substructural MOlecular DEsign (TOPS-MODE) approach, aimed at predicting the rodent carcinogenicity of a set of nitroso compounds selected from the Carcinogenic Potency Data Base (CPDB). The set comprises 26 nitroso compounds, divided into N-nitrosoureas, N-nitrosamines, and C-nitroso compounds, which have been bioassayed in female rats using gavage as a route of administration. Here, we are especially concerned in discerning the role of structural parameters on the carcinogenic activity of this family of compounds. First, the regression model derived, upon removal of two identified nitrosamine outliers, is able to account for more than 86% of the variance in the experimental activity. Second, TOPS-MODE afforded the bond contributions (expressed as fragment contributions to the carcinogenic activity) that can be interpreted and provided tools for better understanding of the mechanisms of carcinogenesis. Finally and, most importantly, we demonstrate the potential use of this approach toward the recognition of structural alerts for carcinogenicity predictions.
European Journal of Medicinal Chemistry | 2013
Aliuska Morales Helguera; Alfonso Pérez-Garrido; Alexandra Gaspar; Joana Reis; Fernando Cagide; Dolores Viña; M. Natália D. S. Cordeiro; Fernanda Borges
Due to their role in the metabolism of monoamine neurotransmitters, MAO-A and MAO-B present a significant pharmacological interest. For instance the inhibitors of human MAO-B are considered useful tools for the treatment of Parkinson Disease. Therefore, the rational design and synthesis of new MAOs inhibitors is considered of great importance for the development of new and more effective treatments of Parkinson Disease. In this work, Quantitative Structure Activity Relationships (QSAR) has been developed to predict the human MAO inhibitory activity and selectivity. The first step was the selection of a suitable dataset of heterocyclic compounds that include chromones, coumarins, chalcones, thiazolylhydrazones, etc. These compounds were previously synthesized in one of our laboratories, or elsewhere, and their activities measured by the same assays and for the same laboratory staff. Applying linear discriminant analysis to data derived from a variety of molecular representations and feature selection algorithms, reliable QSAR models were built which could be used to predict for test compounds the inhibitory activity and selectivity toward human MAO. This work also showed how several QSAR models can be combined to make better predictions. The final models exhibit significant statistics, interpretability, as well as displaying predictive power on an external validation set made up of chromone derivatives with unknown activity (that are being reported here for first time) synthesized by our group, and coumarins recently reported in the literature.
Mini-reviews in Medicinal Chemistry | 2012
Aliuska Morales Helguera; Gisselle Pérez-Machado; M. N. D. S. Cordeiro; Fernanda Borges
Parkinsons disease (PD) is one of the most common neurodegenerative disorders. The role of monoamine oxidase (MAO) inhibitors has expanded in the PD treatment. The present review will summarize the current structureactivity relationship information available on MAOs inhibitors of unrelated families of compounds of oxygen heterocyclic type based on coumarin, chromone and chalcone scaffolds. As the current hitting-one-target therapeutic strategy has been proved to be quite inefficient in PD, this review will also discuss about the development of multi-target drugs, in which MAO inhibition plays a counter-part, as a novel and promising treatment approach for PD.
Current Computer - Aided Drug Design | 2005
Aliuska Morales Helguera; Miguel Ángel Cabrera Pérez; Robert D. Combes; Maykel Pérez González
It is essential, in order to minimize expensive drug failures, to determine potential toxicity problems as early as possible. In view of the large libraries of compounds now being handled by combinatorial chemistry and high-throughput screening, identification of drug toxicity is advisable even before synthesis. Thus, the use of predictive toxicology is called for. A great number of in silico approaches to toxicity prediction have been described in the literature, but one of the most ambitious goals of QSAR applications to toxicology is modeling of chemical carcinogenicity, which has severe consequences on the quality of life and has led to enormous investments in time, financial resources, and animal lives necessary to test the chemicals adequately. This review attempts to summarize present knowledge related to the computational prediction of carcinogenicity. Several computational protocols are described, ranging from knowledge-based approaches and statistically-based systems to simple and fast procedures based on only the 2-D graphing of the investigated structures. Comparative tests of the ability of these systems to predict carcinogenicity show that improvement is still needed. The consensus approach is recommended, whereby the results from several prediction systems are pooled.
Bioorganic & Medicinal Chemistry | 2009
Alfonso Pérez-Garrido; Aliuska Morales Helguera; Adela Abellán Guillén; M. Natália D. S. Cordeiro; Amalio Garrido Escudero
This paper reports a QSAR study for predicting the complexation of a large and heterogeneous variety of substances (233 organic compounds) with beta-cyclodextrins (beta-CDs). Several different theoretical molecular descriptors, calculated solely from the molecular structure of the compounds under investigation, and an efficient variable selection procedure, like the Genetic Algorithm, led to models with satisfactory global accuracy and predictivity. But the best-final QSAR model is based on Topological descriptors meanwhile offering a reasonable interpretation. This QSAR model was able to explain ca. 84% of the variance in the experimental activity, and displayed very good internal cross-validation statistics and predictivity on external data. It shows that the driving forces for CD complexation are mainly hydrophobic and steric (van der Waals) interactions. Thus, the results of our study provide a valuable tool for future screening and priority testing of beta-CDs guest molecules.
Toxicology | 2010
Alfonso Pérez-Garrido; Aliuska Morales Helguera; Gabriel Caravaca López; M. Natália D. S. Cordeiro; Amalio Garrido Escudero
Chemically reactive, alpha, beta-unsaturated carbonyl compounds are common environmental pollutants able to produce a wide range of adverse effects, including, e.g. mutagenicity. This toxic property can often be related to chemical structure, in particular to specific molecular substructures or fragments (alerts), which can then be used in specialized software or expert systems for predictive purposes. In the past, there have been many attempts to predict the mutagenicity of alpha, beta-unsaturated carbonyl compounds through quantitative structure activity relationships (QSAR) but considering only one exclusive endpoint: the Ames test. Besides, even though those studies give a comprehensive understanding of the phenomenon, they do not provide substructural information that could be useful forward improving expert systems based on structural alerts (SAs). This work reports an evaluation of classification models to probe the mutagenic activity of alpha, beta-unsaturated carbonyl compounds over two endpoints--the Ames and mammalian cell gene mutation tests--based on linear discriminant analysis along with the topological Substructure molecular design (TOPS-MODE) approach. The obtained results showed the better ability of the TOPS-MODE approach in flagging structural alerts for the mutagenicity of these compounds compared to the expert system TOXTREE. Thus, the application of the present QSAR models can aid toxicologists in risk assessment and in prioritizing testing, as well as in the improvement of expert systems, such as the TOXTREE software, where SAs are implemented.
Sar and Qsar in Environmental Research | 2010
Aliuska Morales Helguera; G. Pérez-Machado; M.N.D.S. Cordeiro; R.D. Combes
Worldwide, legislative and governmental efforts are focusing on establishing simple screening tools for identifying those chemicals most likely to cause adverse effects without experimentally testing all chemicals of regulatory concern. This is because even the most basic biological testing of compounds of concern, apart from requiring a huge number of test animals, would be neither resource nor time effective. Thus, alternative approaches such as the one proposed here, quantitative structure-activity relationship (QSAR) modelling, are increasingly being used for identifying the potential health hazards and subsequent regulation of new industrial chemicals. This paper follows up on our earlier work that demonstrated the use of the TOPological Substructural MOlecular DEsign (TOPS-MODE) approach to QSAR modelling for predictions of the carcinogenic potency of nitroso compounds. The data set comprises 56 nitroso compounds which have been bio-assayed in female rats and administered by the oral water route. The QSAR model was able to account for about 81% of the variance in the experimental activity and exhibited good cross-validation statistics. A reasonable interpretation of the TOPS-MODE descriptors was achieved by means of bond contributions, which in turn afforded the recognition of structural alerts (SAs) regarding carcinogenicity. A comparison of the SAs obtained from different data sets showed that experimental factors, such as the sex and the oral administration route, exert a major influence on the carcinogenicity of nitroso compounds. The present and previous QSAR models combined together provide a reliable tool for estimating the carcinogenic potency of yet untested nitroso compounds and they should allow the identification of SAs, which can be used as the basis of prediction systems for the rodent carcinogenicity of these compounds.
Toxicology and Applied Pharmacology | 2008
Aliuska Morales Helguera; M. Natália D. S. Cordeiro; Miguel Ángel Cabrera Pérez; Robert D. Combes; Maykel Pérez González
In this work, Quantitative Structure-Activity Relationship (QSAR) modelling was used as a tool for predicting the carcinogenic potency of a set of 39 nitroso-compounds, which have been bioassayed in male rats by using the oral route of administration. The optimum QSAR model provided evidence of good fit and performance of predicitivity from training set. It was able to account for about 84% of the variance in the experimental activity and exhibited high values of the determination coefficients of cross validations, leave one out and bootstrapping (q(2)(LOO)=78.53 and q(2)(Boot)=74.97). Such a model was based on spectral moments weighted with Gasteiger-Marsilli atomic charges, polarizability and hydrophobicity, as well as with Abraham indexes, specifically the summation solute hydrogen bond basicity and the combined dipolarity/polarizability. This is the first study to have explored the possibility of combining Abraham solute descriptors with spectral moments. A reasonable interpretation of these molecular descriptors from a toxicological point of view was achieved by means of taking into account bond contributions. The set of relationships so derived revealed the importance of the length of the alkyl chains for determining carcinogenic potential of the chemicals analysed, and were able to explain the difference between mono-substituted and di-substituted nitrosoureas as well as to discriminate between isomeric structures with hydroxyl-alkyl and alkyl substituents in different positions. Moreover, they allowed the recognition of structural alerts in classical structures of two potent nitrosamines, consistent with their biotransformation. These results indicate that this new approach has the potential for improving carcinogenicity predictions based on the identification of structural alerts.