Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aljosha Judmayer.
financial cryptography | 2016
Katharina Krombholz; Aljosha Judmayer; Matthias Gusenbauer; Edgar R. Weippl
We present the first large-scale survey to investigate how users experience the Bitcoin ecosystem in terms of security, privacy and anonymity. We surveyed 990 Bitcoin users to determine Bitcoin management strategies and identified how users deploy security measures to protect their keys and bitcoins. We found that about 46% of our participants use web-hosted solutions to manage at least some of their bitcoins, and about half of them use exclusively such solutions. We also found that many users do not use all security capabilities of their selected Bitcoin management tool and have significant misconceptions on how to remain anonymous and protect their privacy in the Bitcoin network. Also, 22% of our participants have already lost money due to security breaches or self-induced errors. To get a deeper understanding, we conducted qualitative interviews to explain some of the observed phenomena.
IACR Cryptology ePrint Archive | 2017
Aljosha Judmayer; Alexei Zamyatin; Nicholas Stifter; Artemios G. Voyiatzis; Edgar R. Weippl
Merged mining refers to the concept of mining more than one cryptocurrency without necessitating additional proof-of-work effort. Although merged mining has been adopted by a number of cryptocurrencies already, to this date little is known about the effects and implications. We shed light on this topic area by performing a comprehensive analysis of merged mining in practice. As part of this analysis, we present a block attribution scheme for mining pools to assist in the evaluation of mining centralization. Our findings disclose that mining pools in merge-mined cryptocurrencies have operated at the edge of, and even beyond, the security guarantees offered by the underlying Nakamoto consensus for extended periods. We discuss the implications and security considerations for these cryptocurrencies and the mining ecosystem as a whole, and link our findings to the intended effects of merged mining.
Synthesis Lectures on Information Security, Privacy, and Trust | 2017
Aljosha Judmayer; Nicholas Stifter; Katharina Krombholz; Edgar R. Weippl
Abstract The new field of cryptographic currencies and consensus ledgers, commonly referred to as blockchains, is receiving increasing interest from various different communities. These communities are very diverse and amongst others include: technical enthusiasts, activist groups, researchers from various disciplines, start ups, large enterprises, public authorities, banks, financial regulators, business men, investors, and also criminals. The scientific community adapted relatively slowly to this emerging and fast-moving field of cryptographic currencies and consensus ledgers. This was one reason that, for quite a while, the only resources available have been the Bitcoin source code, blog and forum posts, mailing lists, and other online publications. Also the original Bitcoin paper which initiated the hype was published online without any prior peer review. Following the original publication spirit of the Bitcoin paper, a lot of innovation in this field has repeatedly come from the community itself in t...
availability, reliability and security | 2017
Aljosha Judmayer; Johanna Ullrich; Georg Merzdovnik; Artemios G. Voyiatzis; Edgar R. Weippl
The rapid deployment of IoT systems on the public Internet is not without concerns for the security and privacy of consumers. Security in IoT systems is often poorly engineered and engineering for privacy does notseemtobea concern for vendors at all. Thecombination of poor security hygiene and access to valuable knowledge renders IoT systems a much-sought target for attacks. IoT systems are not only Internet-accessible but also play the role of servers according to the established client-server communication model and are thus configured with static and/or easily predictable IPv6 addresses, rendering them an easy target for attacks. We present 6HOP, a novel addressing scheme for IoT devices. Our proposal is lightweight in operation, requires minimal administration overhead, and defends against reconnaissance attacks, address based correlation as well as denial-of-service attacks. 6HOP therefore exploits the ample address space available in IPv6 networks and provides effective protection this way.
recent advances in intrusion detection | 2018
Johanna Ullrich; Nicholas Stifter; Aljosha Judmayer; Adrian Dabrowski; Edgar R. Weippl
With respect to power consumption, cryptocurrencies have been discussed in a twofold way: First, the cost-benefit ratio of mining hardware in order to gain revenue from mining that exceeds investment and electricity costs. Second, the overall electric energy consumption of cryptocurrencies to estimate the environmental effects of Proof-of-Work. In this paper, we consider a complementary aspect: The stability of the power grids themselves. Power grids have to continuously maintain an equilibrium between power supply and consumption; extended periods of imbalance cause significant deviation of the utility frequency from its nominal value and destabilize the power grid, eventually leading to large-scale blackouts. Proof-of-Work cryptocurrencies are potential candidates for creating such imbalances as disturbances in mining can cause abrupt changes in power demand. The problem is amplified by the ongoing centralization of mining hardware in large mining pools. Therefore, we investigate power consumption characteristics of miners, consult mining pool data, and analyze the amount of total power consumption as well as its worldwide distribution of two major cryptocurrencies, namely Bitcoin and Ethereum. Thus, answering the question: Are Proof-of-Work based cryptocurrencies a threat to reliable power grid operation?.
DPM/CBT@ESORICS | 2018
Aljosha Judmayer; Nicholas Stifter; Philipp Schindler; Edgar R. Weippl
The increasing number of cryptocurrencies, as well as the rising number of actors within each single cryptocurrency, inevitably leads to tensions between the respective communities. As with open source projects, (protocol) forks are often the result of broad disagreement. Usually, after a permanent fork both communities “mine” their own business and the conflict is resolved. But what if this is not the case? In this paper, we outline the possibility of malicious forking and consensus techniques that aim at destroying the other branch of a protocol fork. Thereby, we illustrate how merged mining can be used as an attack method against a permissionless PoW cryptocurrency, which itself involuntarily serves as the parent chain for an attacking merge mined branch of a hard fork.
computer aided systems theory | 2017
Aljosha Judmayer; Georg Merzdovnik; Johanna Ullrich; Artemios G. Voyiatzis; Edgar R. Weippl
While the large scale distribution and unprecedented connectivity of embedded systems in the Internet of Things (IoT) has enabled various useful application scenarios, it also poses a risk to users and infrastructure alike. Recent incidents, like the Mirai botnet, have shown that these devices are often not sufficiently protected against attacks and can therefore be abused for malicious purposes, like distributed denial of service (DDoS) attacks. While it may be an impossible task to completely secure all systems against attacks, moving target defense (MTD) has been proposed as an alternative to prevent attackers from finding devices and endpoints and eventually launching their attacks against them. One of these approaches is network-based moving target defense which relies on the obfuscation and change of network level information, like IP addresses and ports. Since most of these approaches have been developed with desktop applications in mind, their usefulness in IoT applications has not been investigated.
international world wide web conferences | 2016
Aljosha Judmayer; Edgar R. Weippl
Sicherheit | 2016
Katharina Krombholz; Aljosha Judmayer; Matthias Gusenbauer; Edgar R. Weippl
IACR Cryptology ePrint Archive | 2018
Nicholas Stifter; Aljosha Judmayer; Philipp Schindler; Alexei Zamyatin; Edgar R. Weippl