Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allan C. deCamp is active.

Publication


Featured researches published by Allan C. deCamp.


The New England Journal of Medicine | 2012

Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial

Barton F. Haynes; Peter B. Gilbert; M. Juliana McElrath; Susan Zolla-Pazner; Georgia D. Tomaras; S. Munir Alam; David T. Evans; David C. Montefiori; Chitraporn Karnasuta; Ruengpueng Sutthent; Hua-Xin Liao; Anthony L. DeVico; George K. Lewis; Constance Williams; Abraham Pinter; Youyi Fong; Holly Janes; Allan C. deCamp; Yunda Huang; Mangala Rao; Erik Billings; Nicos Karasavvas; Merlin L. Robb; Viseth Ngauy; Mark S. de Souza; Robert Paris; Guido Ferrari; Robert T. Bailer; Kelly A. Soderberg; Charla Andrews

BACKGROUND In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.


Journal of Virology | 2009

Induction of a Striking Systemic Cytokine Cascade prior to Peak Viremia in Acute Human Immunodeficiency Virus Type 1 Infection, in Contrast to More Modest and Delayed Responses in Acute Hepatitis B and C Virus Infections

Andrea R. Stacey; Philip J. Norris; Li Qin; Elizabeth Haygreen; Elizabeth Taylor; John W. Heitman; Mila Lebedeva; Allan C. deCamp; Dongfeng Li; Douglas Grove; Steven G. Self; Persephone Borrow

ABSTRACT Characterization of the immune responses induced in the initial stages of human immunodeficiency virus type 1 (HIV-1) infection is of critical importance for an understanding of early viral pathogenesis and prophylactic vaccine design. Here, we used sequential plasma samples collected during the eclipse and exponential viral expansion phases from subjects acquiring HIV-1 (or, for comparison, hepatitis B virus [HBV]or hepatitis C virus [HCV]) to determine the nature and kinetics of the earliest systemic elevations in cytokine and chemokine levels in each infection. Plasma viremia was quantitated over time, and levels of 30 cytokines and chemokines were measured using Luminex-based multiplex assays and enzyme-linked immunosorbent assays. The increase in plasma viremia in acute HIV-1 infection was found to be associated with elevations in plasma levels of multiple cytokines and chemokines, including rapid and transient elevations in alpha interferon (IFN-α) and interleukin-15 (IL-15) levels; a large increase in inducible protein 10 (IP-10) levels; rapid and more-sustained increases in tumor necrosis factor alpha and monocyte chemotactic protein 1 levels; more slowly initiated elevations in levels of additional proinflammatory factors including IL-6, IL-8, IL-18, and IFN-γ; and a late-peaking increase in levels of the immunoregulatory cytokine IL-10. Notably, there was comparatively little perturbation in plasma cytokine levels during the same phase of HBV infection and a delayed response of more intermediate magnitude in acute HCV infection, indicating that the rapid activation of a striking systemic cytokine cascade is not a prerequisite for viral clearance (which occurs in a majority of HBV-infected individuals). The intense early cytokine storm in acute HIV-1 infection may have immunopathological consequences, promoting immune activation, viral replication, and CD4+ T-cell loss.


Journal of Virology | 2008

Initial B-Cell Responses to Transmitted Human Immunodeficiency Virus Type 1: Virion-Binding Immunoglobulin M (IgM) and IgG Antibodies Followed by Plasma Anti-gp41 Antibodies with Ineffective Control of Initial Viremia

Georgia D. Tomaras; Nicole L. Yates; Pinghuang Liu; Li Qin; Genevieve G. Fouda; Leslie L. Chavez; Allan C. deCamp; Robert Parks; Vicki C Ashley; Judith T. Lucas; Myron S. Cohen; Joseph J. Eron; Charles B. Hicks; Hua-Xin Liao; Steven G. Self; Gary Landucci; Donald N. Forthal; Kent J. Weinhold; Brandon F. Keele; Beatrice H. Hahn; Michael L. Greenberg; Lynn Morris; Salim Safurdeen. Abdool Karim; William A. Blattner; David C. Montefiori; George M. Shaw; Alan S. Perelson; Barton F. Haynes

ABSTRACT A window of opportunity for immune responses to extinguish human immunodeficiency virus type 1 (HIV-1) exists from the moment of transmission through establishment of the latent pool of HIV-1-infected cells. A critical time to study the initial immune responses to the transmitted/founder virus is the eclipse phase of HIV-1 infection (time from transmission to the first appearance of plasma virus), but, to date, this period has been logistically difficult to analyze. To probe B-cell responses immediately following HIV-1 transmission, we have determined envelope-specific antibody responses to autologous and consensus Envs in plasma donors from the United States for whom frequent plasma samples were available at time points immediately before, during, and after HIV-1 plasma viral load (VL) ramp-up in acute infection, and we have modeled the antibody effect on the kinetics of plasma viremia. The first detectable B-cell response was in the form of immune complexes 8 days after plasma virus detection, whereas the first free plasma anti-HIV-1 antibody was to gp41 and appeared 13 days after the appearance of plasma virus. In contrast, envelope gp120-specific antibodies were delayed an additional 14 days. Mathematical modeling of the earliest viral dynamics was performed to determine the impact of antibody on HIV replication in vivo as assessed by plasma VL. Including the initial anti-gp41 immunoglobulin G (IgG), IgM, or both responses in the model did not significantly impact the early dynamics of plasma VL. These results demonstrate that the first IgM and IgG antibodies induced by transmitted HIV-1 are capable of binding virions but have little impact on acute-phase viremia at the timing and magnitude that they occur in natural infection.


Nature | 2012

Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2

Morgane Rolland; Paul T. Edlefsen; Brendan B. Larsen; Sodsai Tovanabutra; Eric Sanders-Buell; Tomer Hertz; Allan C. deCamp; Chris Carrico; Sergey Menis; Craig A. Magaret; Hasan Ahmed; Michal Juraska; Lennie Chen; Philip Konopa; Snehal Nariya; Julia N. Stoddard; Kim Wong; Haishuang Zhao; Wenjie Deng; Brandon Maust; Meera Bose; Shana Howell; A Bates; Michelle Lazzaro; Annemarie O'Sullivan; Esther Lei; Andrea Bradfield; Grace Ibitamuno; Vatcharain Assawadarachai; Robert J. O'Connell

The RV144 trial demonstrated 31% vaccine efficacy at preventing human immunodeficiency virus (HIV)-1 infection. Antibodies against the HIV-1 envelope variable loops 1 and 2 (Env V1 and V2) correlated inversely with infection risk. We proposed that vaccine-induced immune responses against V1/V2 would have a selective effect against, or sieve, HIV-1 breakthrough viruses. A total of 936 HIV-1 genome sequences from 44 vaccine and 66 placebo recipients were examined. We show that vaccine-induced immune responses were associated with two signatures in V2 at amino acid positions 169 and 181. Vaccine efficacy against viruses matching the vaccine at position 169 was 48% (confidence interval 18% to 66%; P = 0.0036), whereas vaccine efficacy against viruses mismatching the vaccine at position 181 was 78% (confidence interval 35% to 93%; P = 0.0028). Residue 169 is in a cationic glycosylated region recognized by broadly neutralizing and RV144-derived antibodies. The predicted distance between the two signature sites (21 ± 7 Å) and their match/mismatch dichotomy indicate that multiple factors may be involved in the protection observed in RV144. Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2-binding antibodies and reduced risk of HIV-1 acquisition, and provide evidence that vaccine-induced V2 responses plausibly had a role in the partial protection conferred by the RV144 regimen.


Science Translational Medicine | 2014

Vaccine-Induced Env V1–V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination

Nicole L. Yates; Hua-Xin Liao; Youyi Fong; Allan C. deCamp; Nathan Vandergrift; William T. Williams; S. Munir Alam; Guido Ferrari; Zhi-Yong Yang; Kelly E. Seaton; Phillip W. Berman; Michael D. Alpert; David T. Evans; Robert J. O’Connell; Donald P. Francis; Faruk Sinangil; Carter Lee; Sorachai Nitayaphan; Supachai Rerks-Ngarm; Jaranit Kaewkungwal; Punnee Pitisuttithum; James Tartaglia; Abraham Pinter; Susan Zolla-Pazner; Peter B. Gilbert; Gary J. Nabel; Nelson L. Michael; Jerome H. Kim; David C. Montefiori; Barton F. Haynes

A V1-V2 IgG3 response to HIV correlates with a decreased risk of HIV-1 infection and is one vaccine-induced humoral response that is higher in a clinical trial showing HIV-1 vaccine efficacy compared to a trial showing nonefficacy. Env IgG3 Takes Center Stage Only one HIV-1 vaccine trial (RV144), to date, has demonstrated some level of vaccine efficacy. IgG antibodies to the V1-V2 region of the HIV-1 envelope correlated with decreased HIV-1 risk. However, a previous vaccine trial (VAX003) also induced these types of antibodies but failed to demonstrate efficacy, thus raising the question about whether the quality of the V1-V2 IgG response and the context of other immune responses were important. Yates et al. report that these two trials did induce a qualitatively distinct antibody subclass response, with more V1V2 IgG3 responses and correlations with antiviral function induced by the partially efficacious RV144 vaccine regimen compared to the VAX003 vaccine regimen that lacks efficacy. The authors then demonstrated that these specific IgG3 antibodies correlated with a decreased risk of infection in a placebo-controlled, blinded study of RV144 vaccinees with and without subsequent HIV-1 infection. Vaccine-induced HIV-1 antibody subclass profiles, specifically Env IgG3, should be evaluated in future HIV-1 vaccine efficacy trials to further refine immune correlates of protection. HIV-1–specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1–specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1–specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials.


Nature Medicine | 2011

Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial

Morgane Rolland; Sodsai Tovanabutra; Allan C. deCamp; Nicole Frahm; Peter B. Gilbert; Eric Sanders-Buell; Laura Heath; Craig A. Magaret; Meera Bose; Andrea Bradfield; Annemarie O'Sullivan; Jacqueline Crossler; Teresa Jones; Marty Nau; Kim Wong; Hong Zhao; Dana N. Raugi; Stephanie Sorensen; Julia N. Stoddard; Brandon Maust; Wenjie Deng; John Hural; Sheri A. Dubey; Nelson L. Michael; John W. Shiver; Lawrence Corey; Fusheng Li; Steve Self; Jerome H. Kim; Susan Buchbinder

We analyzed HIV-1 genome sequences from 68 newly infected volunteers in the STEP HIV-1 vaccine trial. To determine whether the vaccine exerted selective T cell pressure on breakthrough viruses, we identified potential T cell epitopes in the founder sequences and compared them to epitopes in the vaccine. We found greater distances to the vaccine sequence for sequences from vaccine recipients than from placebo recipients. The most significant signature site distinguishing vaccine from placebo recipients was Gag amino acid 84, a site encompassed by several epitopes contained in the vaccine and restricted by human leukocyte antigen (HLA) alleles common in the study cohort. Moreover, the extended divergence was confined to the vaccine components of the virus (HIV-1 Gag, Pol and Nef) and not found in other HIV-1 proteins. These results represent what is to our knowledge the first evidence of selective pressure from vaccine-induced T cell responses on HIV-1 infection in humans.


Journal of Virology | 2009

Antibody Specificities Associated with Neutralization Breadth in Plasma from Human Immunodeficiency Virus Type 1 Subtype C-Infected Blood Donors

Elin S. Gray; Natasha Taylor; Diane Wycuff; Penny L. Moore; Georgia D. Tomaras; Constantinos Kurt Wibmer; Adrian Puren; Allan C. deCamp; Peter B. Gilbert; Blake Wood; David C. Montefiori; James M. Binley; George M. Shaw; Barton F. Haynes; John R. Mascola; Lynn Morris

ABSTRACT Defining the specificities of the anti-human immunodeficiency virus type 1 (HIV-1) envelope antibodies able to mediate broad heterologous neutralization will assist in identifying targets for an HIV-1 vaccine. We screened 70 plasmas from chronically HIV-1-infected individuals for neutralization breadth. Of these, 16 (23%) were found to neutralize 80% or more of the viruses tested. Anti-CD4 binding site (CD4bs) antibodies were found in almost all plasmas independent of their neutralization breadth, but they mainly mediated neutralization of the laboratory strain HxB2 with little effect on the primary virus, Du151. Adsorption with Du151 monomeric gp120 reduced neutralizing activity to some extent in most plasma samples when tested against the matched virus, although these antibodies did not always confer cross-neutralization. For one plasma, this activity was mapped to a site overlapping the CD4-induced (CD4i) epitope and CD4bs. Anti-membrane-proximal external region (MPER) (r = 0.69; P < 0.001) and anti-CD4i (r = 0.49; P < 0.001) antibody titers were found to be correlated with the neutralization breadth. These anti-MPER antibodies were not 4E10- or 2F5-like but spanned the 4E10 epitope. Furthermore, we found that anti-cardiolipin antibodies were correlated with the neutralization breadth (r = 0.67; P < 0.001) and anti-MPER antibodies (r = 0.6; P < 0.001). Our study suggests that more than one epitope on the envelope glycoprotein is involved in the cross-reactive neutralization elicited during natural HIV-1 infection, many of which are yet to be determined, and that polyreactive antibodies are possibly involved in this phenomenon.


PLOS ONE | 2014

Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection

Susan Zolla-Pazner; Allan C. deCamp; Peter B. Gilbert; Constance Williams; Nicole L. Yates; William T. Williams; Robert Howington; Youyi Fong; Daryl Morris; Kelly A. Soderberg; Carmela Irene; Charles Reichman; Abraham Pinter; Robert Parks; Punnee Pitisuttithum; Jaranit Kaewkungwal; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Charla Andrews; Robert J. O'Connell; Zhi Yong Yang; Gary J. Nabel; Jerome H. Kim; Nelson L. Michael; David C. Montefiori; Hua-Xin Liao; Barton F. Haynes; Georgia D. Tomaras

In the RV144 HIV-1 vaccine efficacy trial, IgG antibody (Ab) binding levels to variable regions 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 were an inverse correlate of risk of HIV-1 infection. To determine if V1V2-specific Abs cross-react with V1V2 from different HIV-1 subtypes, if the nature of the V1V2 antigen used to asses cross-reactivity influenced infection risk, and to identify immune assays for upcoming HIV-1 vaccine efficacy trials, new V1V2-scaffold antigens were designed and tested. Protein scaffold antigens carrying the V1V2 regions from HIV-1 subtypes A, B, C, D or CRF01_AE were assayed in pilot studies, and six were selected to assess cross-reactive Abs in the plasma from the original RV144 case-control cohort (41 infected vaccinees, 205 frequency-matched uninfected vaccinees, and 40 placebo recipients) using ELISA and a binding Ab multiplex assay. IgG levels to these antigens were assessed as correlates of risk in vaccine recipients using weighted logistic regression models. Levels of Abs reactive with subtype A, B, C and CRF01_AE V1V2-scaffold antigens were all significant inverse correlates of risk (p-values of 0.0008–0.05; estimated odds ratios of 0.53–0.68 per 1 standard deviation increase). Thus, levels of vaccine-induced IgG Abs recognizing V1V2 regions from multiple HIV-1 subtypes, and presented on different scaffolds, constitute inverse correlates of risk for HIV-1 infection in the RV144 vaccine trial. The V1V2 antigens provide a link between RV144 and upcoming HIV-1 vaccine trials, and identify reagents and methods for evaluating V1V2 Abs as possible correlates of protection against HIV-1 infection. Trial Registration ClinicalTrials.gov NCT00223080


PLOS ONE | 2013

Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial.

Susan Zolla-Pazner; Allan C. deCamp; Timothy Cardozo; Nicos Karasavvas; Raphael Gottardo; Constance Williams; Daryl Morris; Georgia D. Tomaras; Mangala Rao; Erik Billings; Phillip W. Berman; Xiaoying Shen; Charla Andrews; Robert J. O'Connell; Viseth Ngauy; Sorachai Nitayaphan; Mark S. de Souza; Bette T. Korber; Richard A. Koup; Robert T. Bailer; John R. Mascola; Abraham Pinter; David C. Montefiori; Barton F. Haynes; Merlin L. Robb; Supachai Rerks-Ngarm; Nelson L. Michael; Peter B. Gilbert; Jerome H. Kim

The RV144 clinical trial of a prime/boost immunizing regimen using recombinant canary pox (ALVAC-HIV) and two gp120 proteins (AIDSVAX B and E) was previously shown to have a 31.2% efficacy rate. Plasma specimens from vaccine and placebo recipients were used in an extensive set of assays to identify correlates of HIV-1 infection risk. Of six primary variables that were studied, only one displayed a significant inverse correlation with risk of infection: the antibody (Ab) response to a fusion protein containing the V1 and V2 regions of gp120 (gp70-V1V2). This finding prompted a thorough examination of the results generated with the complete panel of 13 assays measuring various V2 Abs in the stored plasma used in the initial pilot studies and those used in the subsequent case-control study. The studies revealed that the ALVAC-HIV/AIDSVAX vaccine induced V2-specific Abs that cross-react with multiple HIV-1 subgroups and recognize both conformational and linear epitopes. The conformational epitope was present on gp70-V1V2, while the predominant linear V2 epitope mapped to residues 165–178, immediately N-terminal to the putative α4β7 binding motif in the mid-loop region of V2. Odds ratios (ORs) were calculated to compare the risk of infection with data from 12 V2 assays, and in 11 of these, the ORs were ≤1, reaching statistical significance for two of the variables: Ab responses to gp70-V1V2 and to overlapping V2 linear peptides. It remains to be determined whether anti-V2 Ab responses were directly responsible for the reduced infection rate in RV144 and whether anti-V2 Abs will prove to be important with other candidate HIV vaccines that show efficacy, however, the results support continued dissection of Ab responses to the V2 region which may illuminate mechanisms of protection from HIV-1 infection and may facilitate the development of an effective HIV-1 vaccine.


Science | 2016

HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

Joseph G. Jardine; Daniel W. Kulp; Colin Havenar-Daughton; Anita Sarkar; Bryan Briney; Devin Sok; Fabian Sesterhenn; June Ereño-Orbea; Oleksandr Kalyuzhniy; Isaiah Deresa; Xiaozhen Hu; Skye Spencer; Meaghan Jones; Erik Georgeson; Yumiko Adachi; Michael Kubitz; Allan C. deCamp; Jean-Philippe Julien; Ian A. Wilson; Dennis R. Burton; Shane Crotty; William R. Schief

Baby steps toward bNAbs Some HIV-infected individuals develop heavily mutated, broadly neutralizing antibodies (bNAbs) that target HIV. Scientists aim to design vaccines that would elicit such antibodies. Jardine et al. report an important step toward this goal: They engineered an immunogen that could engage B cells from HIV-uninfected individuals that express the germline versions of the immunoglobulin genes harbored by a particular class of bNAbs. The frequencies of these B cells, their affinities for the immunogen, and structural analysis suggest that the immunogen is a promising candidate. Further shaping of the B cell response with subsequent immunogens may eventually elicit bNAbs in people. Science, this issue p. 1458 People that have not been infected with HIV can harbor HIV-1 broadly neutralizing antibody B cell precursors. Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.

Collaboration


Dive into the Allan C. deCamp's collaboration.

Top Co-Authors

Avatar

Peter B. Gilbert

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morgane Rolland

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Nelson L. Michael

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jerome H. Kim

International Vaccine Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig A. Magaret

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Paul T. Edlefsen

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Susan Zolla-Pazner

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge