Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allan F. McRae is active.

Publication


Featured researches published by Allan F. McRae.


American Journal of Human Genetics | 2010

A Versatile Gene-Based Test for Genome-wide Association Studies

Jimmy Z. Liu; Allan F. McRae; Dale R. Nyholt; Sarah E. Medland; Naomi R. Wray; Kevin M. Brown; Nicholas K. Hayward; Grant W. Montgomery; Peter M. Visscher; Nicholas G. Martin; Stuart Macgregor

We have derived a versatile gene-based test for genome-wide association studies (GWAS). Our approach, called VEGAS (versatile gene-based association study), is applicable to all GWAS designs, including family-based GWAS, meta-analyses of GWAS on the basis of summary data, and DNA-pooling-based GWAS, where existing approaches based on permutation are not possible, as well as singleton data, where they are. The test incorporates information from a full set of markers (or a defined subset) within a gene and accounts for linkage disequilibrium between markers by using simulations from the multivariate normal distribution. We show that for an association study using singletons, our approach produces results equivalent to those obtained via permutation in a fraction of the computation time. We demonstrate proof-of-principle by using the gene-based test to replicate several genes known to be associated on the basis of results from a family-based GWAS for height in 11,536 individuals and a DNA-pooling-based GWAS for melanoma in approximately 1300 cases and controls. Our method has the potential to identify novel associated genes; provide a basis for selecting SNPs for replication; and be directly used in network (pathway) approaches that require per-gene association test statistics. We have implemented the approach in both an easy-to-use web interface, which only requires the uploading of markers with their association p-values, and a separate downloadable application.


Nature Genetics | 2009

DNA methylation profiles in monozygotic and dizygotic twins

Zachary Kaminsky; Thomas Tang; Sun Chong Wang; Carolyn Ptak; Gabriel Oh; Albert H.C. Wong; Laura A. Feldcamp; Carl Virtanen; Jonas Halfvarson; Curt Tysk; Allan F. McRae; Peter M. Visscher; Grant W. Montgomery; Irving I. Gottesman; Nicholas G. Martin; Art Petronis

Twin studies have provided the basis for genetic and epidemiological studies in human complex traits. As epigenetic factors can contribute to phenotypic outcomes, we conducted a DNA methylation analysis in white blood cells (WBC), buccal epithelial cells and gut biopsies of 114 monozygotic (MZ) twins as well as WBC and buccal epithelial cells of 80 dizygotic (DZ) twins using 12K CpG island microarrays. Here we provide the first annotation of epigenetic metastability of ∼6,000 unique genomic regions in MZ twins. An intraclass correlation (ICC)-based comparison of matched MZ and DZ twins showed significantly higher epigenetic difference in buccal cells of DZ co-twins (P = 1.2 × 10−294). Although such higher epigenetic discordance in DZ twins can result from DNA sequence differences, our in silico SNP analyses and animal studies favor the hypothesis that it is due to epigenomic differences in the zygotes, suggesting that molecular mechanisms of heritability may not be limited to DNA sequence differences.


Genome Biology | 2015

DNA methylation age of blood predicts all-cause mortality in later life

Riccardo E. Marioni; Sonia Shah; Allan F. McRae; Brian H. Chen; Elena Colicino; Sarah E. Harris; Jude Gibson; Anjali K. Henders; Paul Redmond; Simon R. Cox; Alison Pattie; Janie Corley; Lee Murphy; Nicholas G. Martin; Grant W. Montgomery; Andrew P. Feinberg; M. Daniele Fallin; Michael L Multhaup; Andrew E. Jaffe; Roby Joehanes; Joel Schwartz; Allan C. Just; Kathryn L. Lunetta; Joanne M. Murabito; Steve Horvath; Andrea Baccarelli; Daniel Levy; Peter M. Visscher; Naomi R. Wray; Ian J. Deary

BackgroundDNA methylation levels change with age. Recent studies have identified biomarkers of chronological age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of biological age.ResultsHere we test whether differences between people’s chronological ages and estimated ages, DNA methylation age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age (Δage) was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four cohorts was used to determine the association between Δage and mortality. A 5-year higher Δage is associated with a 21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class, hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with a 5-year higher Δage. A pedigree-based heritability analysis of Δage was conducted in a separate cohort. The heritability of Δage was 0.43.ConclusionsDNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors.


American Journal of Human Genetics | 2009

Common Variants in the Trichohyalin Gene Are Associated with Straight Hair in Europeans

Sarah E. Medland; Dale R. Nyholt; Jodie N. Painter; Brian P. McEvoy; Allan F. McRae; Gu Zhu; Scott D. Gordon; Manuel A. Ferreira; Margaret J. Wright; Anjali K. Henders; Megan J. Campbell; David L. Duffy; Narelle K. Hansell; Stuart Macgregor; Wendy S. Slutske; Andrew C. Heath; Grant W. Montgomery; Nicholas G. Martin

Hair morphology is highly differentiated between populations and among people of European ancestry. Whereas hair morphology in East Asian populations has been studied extensively, relatively little is known about the genetics of this trait in Europeans. We performed a genome-wide association scan for hair morphology (straight, wavy, curly) in three Australian samples of European descent. All three samples showed evidence of association implicating the Trichohyalin gene (TCHH), which is expressed in the developing inner root sheath of the hair follicle, and explaining approximately 6% of variance (p=1.5x10(-31)). These variants are at their highest frequency in Northern Europeans, paralleling the distribution of the straight-hair EDAR variant in Asian populations.


International Journal of Epidemiology | 2015

The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936

Riccardo E. Marioni; Sonia Shah; Allan F. McRae; Stuart J Ritchie; Graciela Muniz-Terrera; Sarah E. Harris; Jude Gibson; Paul Redmond; Simon R. Cox; Alison Pattie; J. Corley; Adele Taylor; Lee Murphy; John M. Starr; Steve Horvath; Peter M. Visscher; Naomi R. Wray; Ian J. Deary

Background: The DNA methylation-based ‘epigenetic clock’ correlates strongly with chronological age, but it is currently unclear what drives individual differences. We examine cross-sectional and longitudinal associations between the epigenetic clock and four mortality-linked markers of physical and mental fitness: lung function, walking speed, grip strength and cognitive ability. Methods: DNA methylation-based age acceleration (residuals of the epigenetic clock estimate regressed on chronological age) were estimated in the Lothian Birth Cohort 1936 at ages 70 (n = 920), 73 (n = 299) and 76 (n = 273) years. General cognitive ability, walking speed, lung function and grip strength were measured concurrently. Cross-sectional correlations between age acceleration and the fitness variables were calculated. Longitudinal change in the epigenetic clock estimates and the fitness variables were assessed via linear mixed models and latent growth curves. Epigenetic age acceleration at age 70 was used as a predictor of longitudinal change in fitness. Epigenome-wide association studies (EWASs) were conducted on the four fitness measures. Results: Cross-sectional correlations were significant between greater age acceleration and poorer performance on the lung function, cognition and grip strength measures (r range: −0.07 to −0.05, P range: 9.7 x 10−3 to 0.024). All of the fitness variables declined over time but age acceleration did not correlate with subsequent change over 6 years. There were no EWAS hits for the fitness traits. Conclusions: Markers of physical and mental fitness are associated with the epigenetic clock (lower abilities associated with age acceleration). However, age acceleration does not associate with decline in these measures, at least over a relatively short follow-up.


Aging (Albany NY) , 8 (9) pp. 1844-1865. (2016) | 2016

DNA methylation-based measures of biological age: meta-analysis predicting time to death.

Brian H. Chen; Riccardo E. Marioni; Elena Colicino; Marjolein J. Peters; Cavin K. Ward-Caviness; Pei-Chien Tsai; Nicholas S. Roetker; Allan C. Just; Ellen W. Demerath; Weihua Guan; Jan Bressler; Myriam Fornage; Stephanie A. Studenski; Amy Vandiver; Ann Zenobia Moore; Toshiko Tanaka; Douglas P. Kiel; Liming Liang; Pantel S. Vokonas; Joel Schwartz; Kathryn L. Lunetta; Joanne M. Murabito; Stefania Bandinelli; Dena Hernandez; David Melzer; Michael A. Nalls; Luke C. Pilling; Timothy R. Price; Andrew Singleton; Christian Gieger

Estimates of biological age based on DNA methylation patterns, often referred to as “epigenetic age”, “DNAm age”, have been shown to be robust biomarkers of age in humans. We previously demonstrated that independent of chronological age, epigenetic age assessed in blood predicted all-cause mortality in four human cohorts. Here, we expanded our original observation to 13 different cohorts for a total sample size of 13,089 individuals, including three racial/ethnic groups. In addition, we examined whether incorporating information on blood cell composition into the epigenetic age metrics improves their predictive power for mortality. All considered measures of epigenetic age acceleration were predictive of mortality (p≤8.2×10−9), independent of chronological age, even after adjusting for additional risk factors (p<5.4×10−4), and within the racial/ethnic groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that incorporated information on blood cell composition led to the smallest p-values for time to death (p=7.5×10−43). Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that incorporate information on blood cell counts lead to highly significant associations with all-cause mortality.


Nature | 2014

Detection and replication of epistasis influencing transcription in humans

Gibran Hemani; Konstantin Shakhbazov; Harm-Jan Westra; Tonu Esko; Anjali K. Henders; Allan F. McRae; Jian Yang; Greg Gibson; Nicholas G. Martin; Andres Metspalu; Lude Franke; Grant W. Montgomery; Peter M. Visscher; Joseph E. Powell

Epistasis is the phenomenon whereby one polymorphism’s effect on a trait depends on other polymorphisms present in the genome. The extent to which epistasis influences complex traits and contributes to their variation is a fundamental question in evolution and human genetics. Although often demonstrated in artificial gene manipulation studies in model organisms, and some examples have been reported in other species, few examples exist for epistasis among natural polymorphisms in human traits. Its absence from empirical findings may simply be due to low incidence in the genetic control of complex traits, but an alternative view is that it has previously been too technically challenging to detect owing to statistical and computational issues. Here we show, using advanced computation and a gene expression study design, that many instances of epistasis are found between common single nucleotide polymorphisms (SNPs). In a cohort of 846 individuals with 7,339 gene expression levels measured in peripheral blood, we found 501 significant pairwise interactions between common SNPs influencing the expression of 238 genes (P < 2.91 × 10−16). Replication of these interactions in two independent data sets showed both concordance of direction of epistatic effects (P = 5.56 × 10−31) and enrichment of interaction P values, with 30 being significant at a conservative threshold of P < 9.98 × 10−5. Forty-four of the genetic interactions are located within 5 megabases of regions of known physical chromosome interactions (P = 1.8 × 10−10). Epistatic networks of three SNPs or more influence the expression levels of 129 genes, whereby one cis-acting SNP is modulated by several trans-acting SNPs. For example, MBNL1 is influenced by an additive effect at rs13069559, which itself is masked by trans-SNPs on 14 different chromosomes, with nearly identical genotype–phenotype maps for each cis–trans interaction. This study presents the first evidence, to our knowledge, for many instances of segregating common polymorphisms interacting to influence human traits.


Circulation-cardiovascular Genetics | 2016

Epigenetic Signatures of Cigarette Smoking

Roby Joehanes; Allan C. Just; Riccardo E. Marioni; Luke C. Pilling; Lindsay M. Reynolds; Pooja R. Mandaviya; Weihua Guan; Tao Xu; Cathy E. Elks; Stella Aslibekyan; Hortensia Moreno-Macías; Jennifer A. Smith; Jennifer A. Brody; Radhika Dhingra; Paul Yousefi; James S. Pankow; Sonja Kunze; Sonia Shah; Allan F. McRae; Kurt Lohman; Jin Sha; Devin M. Absher; Luigi Ferrucci; Wei Zhao; Ellen W. Demerath; Jan Bressler; Megan L. Grove; Tianxiao Huan; Chunyu Liu; Michael M. Mendelson

Background—DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. Methods and Results—To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine–phosphate–guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1×10−7 (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1×10−7 (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. Conclusions—Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.


Genome Biology | 2014

Contribution of genetic variation to transgenerational inheritance of DNA methylation

Allan F. McRae; Joseph E. Powell; Anjali K. Henders; Lisa Bowdler; Gibran Hemani; Sonia Shah; Jodie N. Painter; Nicholas G. Martin; Peter M. Visscher; Grant W. Montgomery

BackgroundDespite the important role DNA methylation plays in transcriptional regulation, the transgenerational inheritance of DNA methylation is not well understood. The genetic heritability of DNA methylation has been estimated using twin pairs, although concern has been expressed whether the underlying assumption of equal common environmental effects are applicable due to intrauterine differences between monozygotic and dizygotic twins. We estimate the heritability of DNA methylation on peripheral blood leukocytes using Illumina HumanMethylation450 array using a family based sample of 614 people from 117 families, allowing comparison both within and across generations.ResultsThe correlations from the various available relative pairs indicate that on average the similarity in DNA methylation between relatives is predominantly due to genetic effects with any common environmental or zygotic effects being limited. The average heritability of DNA methylation measured at probes with no known SNPs is estimated as 0.187. The ten most heritable methylation probes were investigated with a genome-wide association study, all showing highly statistically significant cis mQTLs. Further investigation of one of these cis mQTL, found in the MHC region of chromosome 6, showed the most significantly associated SNP was also associated with over 200 other DNA methylation probes in this region and the gene expression level of 9 genes.ConclusionsThe majority of transgenerational similarity in DNA methylation is attributable to genetic effects, and approximately 20% of individual differences in DNA methylation in the population are caused by DNA sequence variation that is not located within CpG sites.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

Compelling evidence that a single nucleotide substitution in TYRP1 is responsible for coat-colour polymorphism in a free-living population of Soay sheep

Jacob Gratten; Dario Beraldi; B. V. Lowder; Allan F. McRae; Peter M. Visscher; Josephine M. Pemberton; Jon Slate

Identifying the genes that underlie phenotypic variation in natural populations is a central objective of evolutionary genetics. Here, we report the identification of the gene and causal mutation underlying coat colour variation in a free-living population of Soay sheep (Ovis aries). We targeted tyrosinase-related protein 1 (TYRP1), a positional candidate gene based on previous work that mapped the Coat colour locus to an approximately 15 cM window on chromosome 2. We identified a non-synonymous substitution in exon IV that was perfectly associated with coat colour. This polymorphism is predicted to cause the loss of a cysteine residue that is highly evolutionarily conserved and likely to be of functional significance. We eliminated the possibility that this association is due to the presence of strong linkage disequilibrium with an unknown regulatory mutation by demonstrating that there is no difference in relative TYRP1 expression between colour morphs. Analysis of this putative causal mutation in a complex pedigree of more than 500 sheep revealed almost perfect co-segregation with coat colour (Χ2-test, p<0.0001, LOD=110.20), and very tight linkage between Coat colour and TYRP1 (LOD=29.50).

Collaboration


Dive into the Allan F. McRae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas G. Martin

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Naomi R. Wray

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian J. Deary

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Jian Yang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge