Allan G. Rasmusson
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Allan G. Rasmusson.
Plant Physiology | 2003
Agnieszka M. Michalecka; Å. Staffan Svensson; Fredrik Johansson; Stephanie C. Agius; Urban Johanson; Axel Brennicke; Stefan Binder; Allan G. Rasmusson
In addition to proton-pumping complex I, plant mitochondria contain several type II NAD(P)H dehydrogenases in the electron transport chain. The extra enzymes allow the nonenergy-conserving electron transfer from cytoplasmic and matrix NAD(P)H to ubiquinone. We have investigated the type II NAD(P)H dehydrogenase gene families in Arabidopsis. This model plant contains two and four genes closely related to potato (Solanum tuberosum) genes nda1 and ndb1, respectively. A novel homolog, termed ndc1, with a lower but significant similarity to potato nda1 and ndb1, is also present. All genes are expressed in several organs of the plant. Among the nda genes, expression of nda1, but not nda2, is dependent on light and circadian regulation, suggesting separate roles in photosynthesis-associated and other respiratory NADH oxidation. Genes from all three gene families encode proteins exclusively targeted to mitochondria, as revealed by expression of green fluorescent fusion proteins and by western blotting of fractionated cells. Phylogenetic analysis indicates that ndc1 affiliates with cyanobacterial type II NADH dehydrogenase genes, suggesting that this gene entered the eukaryotic cell via the chloroplast progenitor. The ndc1 should then have been transferred to the nucleus and acquired a signal for mitochondrial targeting of the protein product. Although they are of different origin, the nda, ndb, and ndc genes carry an identical intron position.
The Plant Cell | 2007
Guillaume Vidal; Miquel Ribas-Carbo; Marie Garmier; Guy Dubertret; Allan G. Rasmusson; Chantal Mathieu; Christine H. Foyer; Rosine De Paepe
Alternative oxidase (AOX) functions in stress resistance by preventing accumulation of reactive oxygen species (ROS), but little is known about in vivo partitioning of electron flow between AOX and the cytochrome pathway. We investigated the relationships between AOX expression and in vivo activity in Nicotiana sylvestris and the complex I–deficient CMSII mutant in response to a cell death elicitor. While a specific AOX1 isoform in the active reduced state was constitutively overexpressed in CMSII, partitioning through the alternative pathway was similar to the wild type. Lack of correlation between AOX content and activity indicates severe metabolic constraints in nonstressed mutant leaves. The bacterial elicitor harpin NEa induced similar timing and extent of cell death and a twofold respiratory burst in both genotypes with little change in AOX amounts. However, partitioning to AOX was increased twofold in the wild type but remained unchanged in CMSII. Oxidative phosphorylation modeling indicated a twofold ATP increase in both genotypes. By contrast, mitochondrial superoxide dismutase activity and reduced forms of ascorbate and glutathione were higher in CMSII than in the wild type. These results demonstrate genetically programmed flexibility of plant respiratory routes and antioxidants in response to elicitors and suggest that sustained ATP production, rather than AOX activity by itself or mitochondrial ROS, might be important for in planta cell death.
Physiologia Plantarum | 2009
Allan G. Rasmusson; Alisdair R. Fernie; Joost T. van Dongen
An increasing number of oscillating or fluctuating cellular systems have been recently described following the adaptation of fluorescent technology. In diverse organisms, these variously involve signalling factors, heat production, central metabolism and reactive oxygen species (ROS). In response to many plant stresses and primarily via the influence of ROS, changes in mRNA and protein levels or in vivo activity of alternative oxidase are often observed. However, in several investigations, a lack of correlation between the mRNA, protein and in vivo activity has been evident. This discrepancy has made it questionable whether the induction of alternative oxidase has importance in regulating alternative pathway activity in vivo, or being diagnostic for a role of alternative oxidase in stress tolerance and ROS avoidance. Here, we suggest a role of alternative oxidase in counteracting deleterious short-term metabolic fluctuations, especially under stress conditions. This model emphasizes the importance of peak activity for establishing protein levels and allows an amalgamation of the present status of physiological, cellular and molecular knowledge.
Trends in Plant Science | 1998
Ian M. Møller; Allan G. Rasmusson
Many diverse metabolic processes are coupled to the turnover of the coenzyme NADP in the matrix of plant mitochondria. NADPH can be produced via the NADP-specific isocitrate dehydrogenase as well as via enzymes like NAD-malic enzyme, NAD-malate dehydrogenase and Δ t -pyrroline-5-carboxylate dehydrogenase. Although not NADP-specific, the latter enzymes can all catalyse the reduction of NADP + at appreciable rates. The NADPH produced can be used in folate metabolism, by glutathione reductase for protection against oxidative damage, and by thioredoxin reductase in the (putative) regulation of metabolic pathways via thiolgroup reduction. It can also be oxidized by the respiratory chain via a Ca 2+ -dependent NADPH dehydrogenase —this is a potential way of regulating the NADP reduction level in the matrix and thus, indirectly, the other processes. It is now possible to present an integrated picture of NADP turnover inside the mitochondrion.
Plant Physiology | 2004
Matthew A. Escobar; Keara A. Franklin; Å. Staffan Svensson; Michael G. Salter; Garry C. Whitelam; Allan G. Rasmusson
Controlled oxidation reactions catalyzed by the large, proton-pumping complexes of the respiratory chain generate an electrochemical gradient across the mitochondrial inner membrane that is harnessed for ATP production. However, several alternative respiratory pathways in plants allow the maintenance of substrate oxidation while minimizing the production of ATP. We have investigated the role of light in the regulation of these energy-dissipating pathways by transcriptional profiling of the alternative oxidase, uncoupling protein, and type II NAD(P)H dehydrogenase gene families in etiolated Arabidopsis seedlings. Expression of the nda1 and ndc1 NAD(P)H dehydrogenase genes was rapidly up-regulated by a broad range of light intensities and qualities. For both genes, light induction appears to be a direct transcriptional effect that is independent of carbon status. Mutant analyses demonstrated the involvement of two separate photoreceptor families in nda1 and ndc1 light regulation: the phytochromes (phyA and phyB) and an undetermined blue light photoreceptor. In the case of the nda1 gene, the different photoreceptor systems generate distinct kinetic induction profiles that are integrated in white light response. Primary transcriptional control of light response was localized to a 99-bp region of the nda1 promoter, which contains an I-box flanked by two GT-1 elements, an arrangement prevalent in the promoters of photosynthesis-associated genes. Light induction was specific to nda1 and ndc1. The only other substantial light effect observed was a decrease in aox2 expression. Overall, these results suggest that light directly influences the respiratory electron transport chain via photoreceptor-mediated transcriptional control, likely for supporting photosynthetic metabolism.
Biochimica et Biophysica Acta | 1998
Allan G. Rasmusson; Volker Heiser; Eduardo Zabaleta; Axel Brennicke; Lutz Grohmann
Respiratory complex I of plant mitochondria has to date been investigated with respect to physiological function, biochemical properties and molecular structure. In the respiratory chain complex I is the major entry gate for low potential electrons from matrix NADH, reducing ubiquinone and utilizing the released energy to pump protons across the inner membrane. Plant complex I is active against a background of several other NAD(P)H dehydrogenases, which do not contribute in proton pumping, but permit and establish several different routes of shuttling electrons from NAD(P)H to ubiquinone. Identification of the corresponding molecular structures, that is the proteins and genes of the different NADH dehydrogenases, will allow more detailed studies of this interactive regulatory network in plant mitochondria. Present knowledge of the structure of complex I and the respective mitochondrial and nuclear genes encoding various subunits of this complex in plants is summarized here. Copyright 1998 Elsevier Science B.V.
Journal of Bioenergetics and Biomembranes | 1993
Ian M. Møller; Allan G. Rasmusson; Kenneth M. Fredlund
Plant (and fungal) mitochondria contain multiple NAD(P)H dehydrogenases in the inner membrane all of which are connected to the respiratory chain via ubiquinone. On the outer surface, facing the intermembrane space and the cytoplasm, NADH and NADPH are oxidized by what is probably a single low-molecular-weight, nonproton-pumping, unspecific rotenone-insensitive NAD(P)H dehydrogenase. Exogenous NADH oxidation is completely dependent on the presence of free Ca2+ with aK0.5 of about 1 µM. On the inner surface facing the matrix there are two dehydrogenases: (1) the proton-pumping rotenone-sensitive multisubunit Complex I with properties similar to those of Complex I in mammalian and fungal mitochondria. (2) a rotenone-insensitive NAD(P)H dehydrogenase with equal activity with NADH and NADPH and no proton-pumping activity. The NADPH-oxidizing activity of this enzyme is completely dependent on Ca2+ with aK0.5 of 3 µM. The enzyme consists of a single subunit of 26 kDa and has a native size of 76 kDa, which means that it may form a trimer.
Plant Cell and Environment | 2010
Ida Lager; Ola Andréasson; Tiffany L. Dunbar; Erik Andreasson; Matthew A. Escobar; Allan G. Rasmusson
pH is a highly variable environmental factor for the root, and plant cells can modify apoplastic pH for nutrient acquisition and in response to extracellular signals. Nevertheless, surprisingly few effects of external pH on plant gene expression have been reported. We have used microarrays to investigate whether external pH affects global gene expression. In Arabidopsis thaliana roots, 881 genes displayed at least twofold changes in transcript abundance 8 h after shifting medium pH from 6.0 to 4.5, identifying pH as a major affector of global gene expression. Several genes responded within 20 min, and gene responses were also observed in leaves of seedling cultures. The pH 4.5 treatment was not associated with abiotic stress, as evaluated from growth and transcriptional response. However, the observed patterns of global gene expression indicated redundancies and interactions between the responses to pH, auxin and pathogen elicitors. In addition, major shifts in gene expression were associated with cell wall modifications and Ca(2+) signalling. Correspondingly, a marked overrepresentation of Ca(2+)/calmodulin-associated motifs was observed in the promoters of pH-responsive genes. This strongly suggests that plant pH recognition involves intracellular Ca(2+). Overall, the results emphasize the previously underappreciated role of pH in plant responses to the environment.
Journal of Biological Chemistry | 2011
Santiago J. Ramírez-Aguilar; Mandy Keuthe; Marcio Rocha; Vadim V. Fedyaev; Katharina Kramp; Kapuganti Jagadis Gupta; Allan G. Rasmusson; Waltraud X. Schulze; Joost T. van Dongen
Background: Respiratory supercomplexes are known to exist, but their function remains to be revealed. Results: Plant supercomplexes are affected by hypoxia and a concomitant drop in pH. Conclusion: Respiratory supercomplexes are dynamic structures that are affected by the intracellular environment. Significance: Supercomplexes could have a regulatory function in guiding electrons through alternative respiratory pathways. Respiratory supercomplexes are large protein structures formed by various enzyme complexes of the mitochondrial electron transport chain. Using native gel electrophoresis and activity staining, differential regulation of complex activity within the supercomplexes was investigated. During prolonged hypoxia, complex I activity within supercomplexes diminished, whereas the activity of the individual complex I-monomer increased. Concomitantly, an increased activity was observed during hypoxia for complex IV in the smaller supercomplexes that do not contain complex I. These changes in complex activity within supercomplexes reverted again during recovery from the hypoxic treatment. Acidification of the mitochondrial matrix induced similar changes in complex activity within the supercomplexes. It is suggested that the increased activity of the small supercomplex III2+IV can be explained by the dissociation of complex I from the large supercomplexes. This is discussed to be part of a mechanism regulating the involvement of the alternative NADH dehydrogenases, known to be activated by low pH, and complex I, which is inhibited by low pH. It is concluded that the activity of complexes within supercomplexes can be regulated depending on the oxygen status and the pH of the mitochondrial matrix.
Journal of Biological Chemistry | 2007
Daniela A. Geisler; Christian Broselid; Lars Hederstedt; Allan G. Rasmusson
Type II NAD(P)H:quinone oxidoreductases are single polypeptide proteins widespread in the living world. They bypass the first site of respiratory energy conservation, constituted by the type I NADH dehydrogenases. To investigate substrate specificities and Ca2+ binding properties of seven predicted type II NAD(P)H dehydrogenases of Arabidopsis thaliana we have produced them as T7-tagged fusion proteins in Escherichia coli. The NDB1 and NDB2 enzymes were found to bind Ca2+, and a single amino acid substitution in the EF hand motif of NDB1 abolished the Ca2+ binding. NDB2 and NDB4 functionally complemented an E. coli mutant deficient in endogenous type I and type II NADH dehydrogenases. This demonstrates that these two plant enzymes can substitute for the NADH dehydrogenases in the bacterial respiratory chain. Three NDB-type enzymes displayed distinct catalytic profiles with substrate specificities and Ca2+ stimulation being considerably affected by changes in pH and substrate concentrations. Under physiologically relevant conditions, the NDB1 fusion protein acted as a Ca2+-dependent NADPH dehydrogenase. NDB2 and NDB4 fusion proteins were NADH-specific, and NDB2 was stimulated by Ca2+. The observed activity profiles of the NDB-type enzymes provide a fundament for understanding the mitochondrial system for direct oxidation of cytosolic NAD(P)H in plants. Our findings also suggest different modes of regulation and metabolic roles for the analyzed A. thaliana enzymes.