Allan Lançon
University of Burgundy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Allan Lançon.
Drug Metabolism and Disposition | 2007
Allan Lançon; Nathalie Hanet; Brigitte Jannin; Dominique Delmas; Jean-Marie Heydel; Gérard Lizard; Marie-Christine Chagnon; Yves Artur; Norbert Latruffe
trans-Resveratrol is a polyphenol present in several plant species. Its chemopreventive properties against several diseases have been largely documented. To validate a model for the study of the factors influencing its biological fate at the hepatic level, the metabolism and the efflux of resveratrol were studied in the human hepatoblastoma cell line, HepG2. Comparative high-performance liquid chromatography analysis of cell culture media before and after deconjugation showed that resveratrol was rapidly conjugated; at the concentration of 10 μM, it was entirely metabolized at 8 h of incubation. Two main resveratrol metabolites, monosulfate and disulfate, were identified by atmospheric pressure chemical ionization-mass spectrometry, thanks to their quasi-molecular ion and their characteristic fragmentation. To correlate with the auto-induction of resveratrol metabolism evidenced in HepG2 cells after a pretreatment for 48 h with 10 μM resveratrol, the inducibility of phase II enzymes by resveratrol was studied by real-time quantitative reverse transcriptase-polymerase chain reaction and flow cytometry. Observed, in particular, were an increase in mRNA expression levels of three metabolizing enzymes, two isoforms of UDP-glucuronosyltransferases, UGT1A1 and UGT2B7 (5-fold increased), and a sulfotransferase, ST1E1, in cells pretreated for 24 h with 10 μM resveratrol. These results were correlated with an increase in protein expression, especially after 48 h of treatment. On the other hand, the intracellular resveratrol retention in cells treated with MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), a multidrug resistance-associated protein inhibitor, strongly suggests the involvement of this ABC transporter family in the efflux of resveratrol conjugates from human liver.
Biochimie | 2008
Didier Colin; Allan Lançon; Dominique Delmas; Gérard Lizard; Jessica Abrossinow; Edmond Kahn; Brigitte Jannin; Norbert Latruffe
Resveratrol is a well known polyphenol largely produced in grapevine. It is a strong antioxidant and a free radical scavenger. It exhibits several beneficial effects for health including cancer. Resveratrol antioxidant activity is essential in the prevention of chemical-induced cancer by inhibiting initiation step of carcinogenesis process but it is also considered to inhibit cancer promotion and progression steps. While the effects of resveratrol on cancer cells are widely described, the data available on the antiproliferative potential of resveratrol derivatives remain weak. Nevertheless, resveratrol analogs could exhibit stronger potentials than the parent molecule. So, we compared the cellular effects of trans-resveratrol, trans-epsilon-viniferin and their respective acetate derivatives, as well as a polyphenol mixture extracted from grapevine shoots, called vineatrol. We studied their abilities to interfere with cell proliferation, their uptake and their effects on parameters of cellular state in human hepatoma cells (HepG2). Cell growth experiments show that resveratrol triacetate presents a slightly better antiproliferative potential than resveratrol. The dimer epsilon-viniferin,as well as its pentaacetate analog, is less powerful than resveratrol, although a similar uptake kinetics in cells. Interestingly, among the tested polyphenols, vineatrol is the most potent solution, indicating a possible synergistic effect of both resveratrol and epsilon-viniferin. We took advantage of the fluorescence properties of these compounds to evidence cellular uptake by using flow cytometry. In addition, by competition assay, we demonstrate that resveratrol triacetate enters in hepatic HepG2 cells by the same way as resveratrol. By autofluorescence in situ measurement we observed that resveratrol and related compounds induce deep changes in cells activity. These changes occur mainly by increasing NADPH cell content and the number of green fluorescent cytoplasmic granular structures which may be related to an induction of detoxifying enzyme mechanisms.
Steroids | 2008
Nathalie Hanet; Allan Lançon; Dominique Delmas; Brigitte Jannin; Marie-Christine Chagnon; Moustapha Cherkaoui-Malki; Norbert Latruffe; Yves Artur; Jean-Marie Heydel
In order to provide a global analysis of the effects of endocrine disruptors on the hormone cellular bioavailability, we combined 17beta-estradiol (E2) cellular flow studies with real-time PCR and Western blot expression measurements of genes involved in the hormone metabolism and excretion. Three endocrine disruptors commonly found in food were chosen for this study, which was conducted in the estrogen receptor (ER) negative hepatoblastoma HepG2 cell line: bisphenol A (BPA), genistein (GEN) and resveratrol (RES). We showed that 24 h after a single dose treatment with genistein, resveratrol or bisphenol A, the expression of ATP-binding cassette transporters (the multidrug resistance or MDR, and the multidrug resistance associated proteins or MRP) uridine diphosphate-glucuronosyltransferases (UGT) and/or sulfotransferases (ST) involved in 17beta-estradiol elimination process were significantly modulated and that 17beta-estradiol cellular flow was modified. Resveratrol induced MDR1 and MRP3 expressions, bisphenol A induced MRP2 and MRP3 expressions, and both enhanced 17beta-estradiol efflux. Genistein, on the other hand, inhibited ST1E1 and UGT1A1 expressions, and led to 17beta-estradiol cellular retention. Thus, we demonstrate that bisphenol A, genistein and resveratrol modulate 17beta-estradiol cellular bioavailability in HepG2 and that these modulations most probably involve regulations of 17beta-estradiol phase II and III metabolism proteins. Up to now, the estrogenicity of environmental estrogenic pollutants has been based on the property of these compounds to bind to ERs. Our results obtained with ER negative cells provide strong evidence for the existence of ER-independent pathways leading to endocrine disruption.
Annals of the New York Academy of Sciences | 2015
Norbert Latruffe; Allan Lançon; Raffaele Frazzi; Virginie Aires; Dominique Delmas; Jean Jacques Michaille; Fatima Djouadi; Jean Bastin; Mustapha Cherkaoui-Malki
This review presents recent evidence implicating microRNAs (miRNAs) in the beneficial effects of resveratrol (trihydroxystilbene), a nonflavonoid plant polyphenol, with emphasis on its anti‐inflammatory effects. Many diseases and pathologies have been linked, directly or indirectly, to inflammation. These include infections, injuries, atherosclerosis, diabetes mellitus, obesity, cancer, osteoarthritis, age‐related macular degeneration, demyelination, and neurodegenerative diseases. Resveratrol can both decrease the secretion of proinflammatory cytokines (e.g., IL‐6, IL‐8, and TNF‐α) and increase the production of anti‐inflammatory cytokines; it also decreases the expression of adhesion proteins (e.g., ICAM‐1) and leukocyte chemoattractants (e.g., MCP‐1). Resveratrols primary targets appear to be the transcription factors AP‐1 and NF‐κB, as well as the gene COX2. Although no mechanistic link between any particular miRNA and resveratrol has been identified, resveratrol effects depend at least in part upon the modification of the expression of a variety of miRNAs that can be anti‐inflammatory (e.g., miR‐663), proinflammatory (e.g., miR‐155), tumor suppressing (e.g., miR‐663), or oncogenic (e.g., miR‐21).
Molecules | 2016
Allan Lançon; Raffaele Frazzi; Norbert Latruffe
Resveratrol (3,4′,5 trihydroxy-trans-stilbene) is one of the best known phytophenols with pleiotropic properties. It is a phytoalexin produced by vine and it leads to the stimulation of natural plant defenses but also exhibits many beneficial effects in animals and humans by acting on a wide range of organs and tissues. These include the prevention of cardiovascular diseases, anti-cancer potential, neuroprotective effects, homeostasia maintenance, aging delay and a decrease in inflammation. Age-related macular degeneration (AMD) is one of the main causes of deterioration of vision in adults in developed countries This review deals with resveratrol and ophthalmology by focusing on the antioxidant, anti-inflammatory, and anti-angiogenic effects of this molecule. The literature reports that resveratrol is able to act on various cell types of the eye by increasing the level of natural antioxidant enzymatic and molecular defenses. Resveratrol anti-inflammatory effects are due to its capacity to limit the expression of pro-inflammatory factors, such as interleukins and prostaglandins, and also to decrease the chemo-attraction and recruitment of immune cells to the inflammatory site. In addition to this, resveratrol was shown to possess anti-VEGF effects and to inhibit the proliferation and migration of vascular endothelial cells. Resveratrol has the potential to be used in a range of human ocular diseases and conditions, based on animal models and in vitro experiments.
Journal of the Science of Food and Agriculture | 2013
Allan Lançon; Jean-Jacques Michaille; Norbert Latruffe
Besides synthesizing nutritive substances (proteins, fats and carbohydrates) for energy and growth, plants produce numerous non-energetic so-called secondary metabolites (mainly polyphenols) that allow them to protect themselves against infections and other types of hostile environments. Interestingly, these polyphenols often provide cells with valuable bioactive properties for the maintenance of their functions and homeostasis (signaling, gene regulation, protection against acquired or infectious diseases, etc.) both in humans and animals. Namely, from a nutritional point of view, and based on epidemiological data, it is now well accepted that the regular consumption of green vegetables, fruits and fibers has protective effects against the onset of cancer as well as of inflammatory, neurodegenerative, metabolic and cardiovascular diseases, and consequently increases the overall longevity. In particular, grapevine plants produce large amounts of a wide variety of polyphenols. The most prominent of those-resveratrol-has been shown to impair or delay cardiovascular alterations, cancer, inflammation, aging, etc. Until recently, the molecular bases of the pleiotropic effects of resveratrol remained largely unclear despite numerous studies on a variety of signaling pathways and the transcriptional networks that they control. However, it has been recently proposed that the protective properties of resveratrol may arise from its modulation of small non-coding regulatory RNAs, namely microRNAs. The aim of this review is to present up-to-date data on the control of microRNA expression by dietary phytophenols in different types of human cells, and their impact on cell differentiation, cancer development and the regulation of the inflammatory response.
Biochemical Pharmacology | 2012
Jacques Kaminski; Allan Lançon; Virginie Aires; Emeric Limagne; Esmerina Tili; Jean Jacques Michaille; Norbert Latruffe
Resveratrol is one of the most widely studied bio-active plant polyphenols. While its effect on endothelial blood vessel cells, cancer cells, inflammatory processes and neurodegenerative events is well documented, little is known about the implication of this phytophenol in differentiating processes, particularly in skeletal muscle cells. Here, we report the effects of resveratrol on mouse skeletal muscle-derived cells (C2C12) in either a nondifferentiated (myoblasts) or differentiated state (myotubes) by evaluating resveratrol uptake, cell proliferation, changes in cell shape, and the expression of genes encoding muscle-specific transcription factors or contractile proteins. Resveratrol: (1) rapidly accumulates within cells through passive and facilitated processes; (2) does not strongly affect cell viability, cell cycle and apoptosis; (3) behaves as a pro-differentiating agent as shown by the lengthening of cells, leading to a myotube phenotype; (4) upregulates muscular pro-differentiation markers and transcription factors (myogenin, Scrp3) starting after 12h of exposure and strongly increases heavy chain myosin content after 18h of exposure to resveratrol; (5) increases the Srf transcription factors transcript level, a target mRNA of the miRNA-133b, which is itself downregulated by this polyphenol. These results put forward new pro-differentiating regulatory properties of resveratrol on skeletal muscles at least partly via modulation of specific miRNAs.
Molecules | 2014
Norbert Latruffe; Matthias Menzel; Dominique Delmas; René Buchet; Allan Lançon
Phytophenols are considered to have beneficial effects towards human physiology. They are food microcomponents with potent chemopreventive properties towards the most three frequent contemporary human diseases, e.g., cardiovascular alterations, cancer and neurodegenerative pathologies. Related to this, the plasmatic form and plasmatic level of plant polyphenols in the body circulation are crucial for their efficiency. Thus, determinations of the binding process of resveratrol and of common flavonoids produced by major edible plants, berries and fruits to plasma proteins are essential. The interactions between resveratrol and albumin, a major plasma protein, were compared with those already published, involving curcumin, genistein, quercetin and other well-known food-containing polyphenols. The approaches used are usually intrinsic fluorescence intensity changes, quenching of protein intrinsic fluorescence and infrared spectroscopy. It appears that: (1) all of the studied polyphenols interact with albumin; (2) while most of the studied polyphenols interact at one albumin binding site, there are two different types of resveratrol binding sites for bovine serum albumin, one with the highest affinity (apparent KD of 4 µM) with a stoichiometry of one per monomer and a second with a lower affinity (apparent KD of 20 µM) with also a stoichiometry of one per monomer; (3) at least one binding site is in the vicinity of one tryptophanyl residue of bovine serum albumin; and (4) resveratrol binding to bovine serum albumin produces a very small structural conformation change of the polypeptide chain. These results support a role played by polyphenols-albumin interactions in the plasma for the bio-activities of these food microcomponents in the body.
Nutrients | 2016
Emeric Limagne; Allan Lançon; Dominique Delmas; Mustapha Cherkaoui-Malki; Norbert Latruffe
State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis.
Archive | 2014
Norbert Latruffe; Allan Lançon; Emeric Limagne; Jean-Jacques Michaille
Grape polyphenols are abundant. They play essential roles in the vine’s life, particularly in its defense mechanisms. Interestingly, the grape, fresh or dried, is a widely consumed fruit by humans, as are its processed products, grape juice and wine. Moreover, they contain vast and highly varied quantities of polyphenols. Like other phytophenols, grape and wine resveratrol is considered a protective micronutrient like flavonoids, epicatechins in green tea and cocoa, quercetin in apples and onions, curcumin of the turmeric root, and hydroxytyrosol in olive oil. Resveratrol is a powerful natural antioxidant in vine. Interestingly, in humans, it protects low density lipoproteins against oxidation and consequently prevents or delays atherosclerosis. On the other hand, inflammation is the reflect of many dysfunctions or pathologies, where resveratrol has a positive effect against these disorders. This review will summarize resveratrol anti-inflammatory properties and mechanisms toward arthritis and retinopathies.