Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allan Sheppard is active.

Publication


Featured researches published by Allan Sheppard.


Development | 2005

LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism.

Peter Cartwright; Cameron McLean; Allan Sheppard; Duane Rivett; Karen Jones; Stephen Dalton

Murine ES cells can be maintained as a pluripotent, self-renewing population by LIF/STAT3-dependent signaling. The downstream effectors of this pathway have not been previously defined. In this report, we identify a key target of the LIF self-renewal pathway by showing that STAT3 directly regulates the expression of the Myc transcription factor. Murine ES cells express elevated levels of Myc and following LIF withdrawal, Myc mRNA levels collapse and Myc protein becomes phosphorylated on threonine 58 (T58), triggering its GSK3β dependent degradation. Maintained expression of stable Myc (T58A) renders self-renewal and maintenance of pluripotency independent of LIF. By contrast, expression of a dominant negative form of Myc antagonizes self-renewal and promotes differentiation. Transcriptional control by STAT3 and suppression of T58 phosphorylation are crucial for regulation of Myc activity in ES cells and therefore in promoting self-renewal. Together, our results establish a mechanism for how LIF and STAT3 regulate ES cell self-renewal and pluripotency.


Diabetes | 2011

Epigenetic Gene Promoter Methylation at Birth Is Associated With Child’s Later Adiposity

Keith M. Godfrey; Allan Sheppard; Peter D. Gluckman; Karen A. Lillycrop; Graham C. Burdge; Cameron McLean; Joanne Rodford; J.L. Slater-Jefferies; Emma Garratt; Sarah Crozier; B. Starling Emerald; Catharine R. Gale; Hazel Inskip; C Cooper; Mark A. Hanson

OBJECTIVE Fixed genomic variation explains only a small proportion of the risk of adiposity. In animal models, maternal diet alters offspring body composition, accompanied by epigenetic changes in metabolic control genes. Little is known about whether such processes operate in humans. RESEARCH DESIGN AND METHODS Using Sequenom MassARRAY we measured the methylation status of 68 CpGs 5′ from five candidate genes in umbilical cord tissue DNA from healthy neonates. Methylation varied greatly at particular CpGs: for 31 CpGs with median methylation ≥5% and a 5–95% range ≥10%, we related methylation status to maternal pregnancy diet and to child’s adiposity at age 9 years. Replication was sought in a second independent cohort. RESULTS In cohort 1, retinoid X receptor-α (RXRA) chr9:136355885+ and endothelial nitric oxide synthase (eNOS) chr7:150315553+ methylation had independent associations with sex-adjusted childhood fat mass (exponentiated regression coefficient [β] 17% per SD change in methylation [95% CI 4–31], P = 0.009, n = 64, and β = 20% [9–32], P < 0.001, n = 66, respectively) and %fat mass (β = 10% [1–19], P = 0.023, n = 64 and β =12% [4–20], P = 0.002, n = 66, respectively). Regression analyses including sex and neonatal epigenetic marks explained >25% of the variance in childhood adiposity. Higher methylation of RXRA chr9:136355885+, but not of eNOS chr7:150315553+, was associated with lower maternal carbohydrate intake in early pregnancy, previously linked with higher neonatal adiposity in this population. In cohort 2, cord eNOS chr7:150315553+ methylation showed no association with adiposity, but RXRA chr9:136355885+ methylation showed similar associations with fat mass and %fat mass (β = 6% [2–10] and β = 4% [1–7], respectively, both P = 0.002, n = 239). CONCLUSIONS Our findings suggest a substantial component of metabolic disease risk has a prenatal developmental basis. Perinatal epigenetic analysis may have utility in identifying individual vulnerability to later obesity and metabolic disease.


Journal of Bone and Mineral Research | 2014

Childhood Bone Mineral Content Is Associated With Methylation Status of the RXRA Promoter at Birth

Nicholas C. Harvey; Allan Sheppard; Keith M. Godfrey; Cameron McLean; Emma Garratt; Georgia Ntani; Lucy Davies; Robert Murray; Hazel Inskip; Peter D. Gluckman; Mark A. Hanson; Karen A. Lillycrop; C Cooper

Maternal vitamin D deficiency has been associated with reduced offspring bone mineral accrual. Retinoid‐X receptor‐alpha (RXRA) is an essential cofactor in the action of 1,25‐dihydroxyvitamin D (1,25[OH]2‐vitamin D), and RXRA methylation in umbilical cord DNA has been associated with later offspring adiposity. We tested the hypothesis that RXRA methylation in umbilical cord DNA collected at birth is associated with offspring skeletal development, assessed by dual‐energy X‐ray absorptiometry, in a population‐based mother‐offspring cohort (Southampton Womens Survey). Relationships between maternal plasma 25‐hydroxyvitamin D (25[OH]‐vitamin D) concentrations and cord RXRA methylation were also investigated. In 230 children aged 4 years, a higher percent methylation at four of six RXRA CpG sites measured was correlated with lower offspring bone mineral content (BMC) corrected for body size (β = −2.1 to −3.4 g/SD, p = 0.002 to 0.047). In a second independent cohort (n = 64), similar negative associations at two of these CpG sites, but positive associations at the two remaining sites, were observed; however, none of the relationships in this replication cohort achieved statistical significance. The maternal free 25(OH)‐vitamin D index was negatively associated with methylation at one of these RXRA CpG sites (β = −3.3 SD/unit, p = 0.03). Thus, perinatal epigenetic marking at the RXRA promoter region in umbilical cord was inversely associated with offspring size–corrected BMC in childhood. The potential mechanistic and functional significance of this finding remains a subject for further investigation.


Biosensors and Bioelectronics | 2015

Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets.

Bicheng Zhu; Marsilea Adela Booth; Phillip Shepherd; Allan Sheppard; Jadranka Travas-Sejdic

In this communication we report on two important effects related to the detection of DNAs. Firstly, we investigate the sensor response to target DNA when the target is in a double stranded (ds) form and compare the response to single stranded (ss) target DNA. The importance in evaluating such an effect lies in the fact that most biological DNA targets are found in ds form. Secondly, we use synthetic ds targets to investigate the effect of DNA methylation on the sensor response. DNA methylation is known to affect functional properties of DNA and is related to a number of diseases, including various cancers. In these studies, we utilize our previously developed sensor platform, which is based on the use of a glassy carbon electrode-confined conducting polymer that is covalently modified with DNA probe sequences. The signal detection methodology we use is measuring a change in the reaction kinetics of ferro-ferricyanide redox couple at the electrode upon hybridization by means of electrical impedance spectroscopy (EIS). Additionally, EIS is utilized to study the kinetics of the hybridization of the conducting polymer-bound probe with methylated vs. non-methylated ds-DNA. Preliminary results are proving valuable as a guide to the future design of sensors for gene methylation.


International Journal of Epidemiology | 2015

Association between perinatal methylation of the neuronal differentiation regulator HES1 and later childhood neurocognitive function and behaviour

Karen A. Lillycrop; Paula Costello; Ai Ling Teh; Robert Murray; Rebecca Clarke-Harris; Sheila J. Barton; Emma Garratt; Sherry Ngo; Allan Sheppard; Johnny Wong; Shaillay Dogra; Graham C. Burdge; C Cooper; Hazel Inskip; Catharine R. Gale; Peter D. Gluckman; Nicholas C. Harvey; Yap Seng Chong; Fabian Yap; Michael J. Meaney; Anne Rifkin-Graboi; Joanna D. Holbrook; Keith M. Godfrey

Background Early life environments induce long-term changes in neurocognitive development and behaviour. In animal models, early environmental cues affect neuropsychological phenotypes via epigenetic processes but, as yet, there is little direct evidence for such mechanisms in humans. Method We examined the relation between DNA methylation at birth and child neuropsychological outcomes in two culturally diverse populations using a genome-wide methylation analysis and validation by pyrosequencing. Results Within the UK Southampton Women’s Survey (SWS) we first identified 41 differentially methylated regions of interest (DMROI) at birth associated with child’s full-scale IQ at age 4 years. Associations between HES1 DMROI methylation and later cognitive function were confirmed by pyrosequencing in 175 SWS children. Consistent with these findings, higher HES1 methylation was associated with higher executive memory function in a second independent group of 200 SWS 7-year-olds. Finally, we examined a pathway for this relationship within a Singaporean cohort (n = 108). Here, HES1 DMROI methylation predicted differences in early infant behaviour, known to be associated with academic success. In vitro, methylation of HES1 inhibited ETS transcription factor binding, suggesting a functional role of this site. Conclusions Thus, our findings suggest that perinatal epigenetic processes mark later neurocognitive function and behaviour, providing support for a role of epigenetic processes in mediating the long-term consequences of early life environment on cognitive development.


Diabetes | 2014

Elevated S-Adenosylhomocysteine Alters Adipocyte Functionality With Corresponding Changes in Gene Expression and Associated Epigenetic Marks

Sherry Ngo; Xiaoling Li; O'Neill R; Bhoothpur C; Peter D. Gluckman; Allan Sheppard

Maternal deficiencies in micronutrients affecting one-carbon metabolism before and during pregnancy can influence metabolic status and the degree of insulin resistance and obesity of the progeny in adulthood. Notably, maternal and progeny plasma S-adenosylhomocysteine (SAH) levels are both elevated after vitamin deficiency in pregnancy. Therefore, we investigated whether this key one-carbon cycle intermediate directly affects adipocyte differentiation and function. We found that expansion and differentiation of murine 3T3-L1 preadipocytes in the presence of SAH impaired both basal and induced glucose uptake as well as lipolysis compared with untreated controls. SAH did not alter preadipocyte factor 1 (Dlk1) or peroxisome proliferator–activated receptor-γ 2 (Pparγ2) but significantly reduced expression of CAAT enhancer-binding protein-α (Cebpα), Cebpβ, and retinoid x receptor-α (Rxrα) compared with untreated adipocytes. SAH increased Rxrα methylation on a CpG unit (chr2:27,521,057+, chr2:27,521,049+) and CpG residue (chr2:27,521,080+), but not Cebpβ methylation, relative to untreated adipocytes. Trimethylated histone H3-Lys27 occupancy was significantly increased on Cebpα and Rxrα promoters in SAH-treated adipocytes, consistent with the reduction in gene expression. In conclusion, SAH did not affect adipogenesis per se but altered adipocyte functionality through epigenetic mechanisms, such that they exhibited altered glucose disposal and lipolysis. Our findings implicate micronutrient imbalance in subsequent modulation of adipocyte function.


Animal Reproduction Science | 2010

Normal development following chromatin transfer correlates with donor cell initial epigenetic state

Cameron Angus McLean; Zhongde Wang; Kavitha Babu; Angie Edwards; Poothappillai Kasinathan; James M. Robl; Allan Sheppard

If the full potential of chromatin transfer (CT) technology is to be realized for both animal production and biomedical applications it is imperative that the efficiency of the reprogramming process be improved, and the potential for deleterious development be eliminated. Generation of the first cloned animals from adult somatic cells demonstrated that development is substantially an epigenetic process (Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH, 1997. Viable offspring derived from fetal and adult mammalian cells. Nature. 385(6619): 810-813.). In this study, we provide preliminary evidence that the epigenetic state of the donor cell, may be valuable in assessing potential cloning success. We have measured key indicators of cellular epigenetic state in both serially derived cell populations of the same genetic origin, but differing in epigenomic status, and in a distinct cohort of donor cell populations with diverse genetic origins and epigenomic status. Specifically, the relative abundance of particular histone modifications in donor populations prior to manipulation has been correlated with the measurable variance in reprogramming efficiencies observed following CT, as defined by the number of resulting live births and healthy progeny, and the concomitant incidence of deleterious growth measures (notably the appearance of large offspring syndrome (LOS)). Thus, we suggest that the likely outcome and relative success of cloning may be predictable based on the expression of discriminating histone marks present in the donor cell population before CT. This approach may provide the basis of a prognostic signature for the future evaluation and risk assessment of putative donor cells prior to CT, and thus increase future cloning success and alleviate the incidence of abnormal development.


PLOS ONE | 2012

Transcriptome changes affecting Hedgehog and cytokine signalling in the umbilical cord: implications for disease risk.

Walter Stünkel; Hong Pan; Siew Boom Chew; Emilia Tng; Jun Hao Tan; Li Chen; Roy Joseph; Clara Yujing Cheong; Mei-Lyn Ong; Yung Seng Lee; Yap Seng Chong; Seang-Mei Saw; Michael J. Meaney; Kenneth Kwek; Allan Sheppard; Peter D. Gluckman; Joanna D. Holbrook

Background Babies born at lower gestational ages or smaller birthweights have a greater risk of poorer health in later life. Both the causes of these sub-optimal birth outcomes and the mechanism by which the effects are transmitted over decades are the subject of extensive study. We investigated whether a transcriptomic signature of either birthweight or gestational age could be detected in umbilical cord RNA. Methods The gene expression patterns of 32 umbilical cords from Singaporean babies of Chinese ethnicity across a range of birthweights (1698–4151 g) and gestational ages (35–41 weeks) were determined. We confirmed the differential expression pattern by gestational age for 12 genes in a series of 127 umbilical cords of Chinese, Malay and Indian ethnicity. Results We found that the transcriptome is substantially influenced by gestational age; but less so by birthweight. We show that some of the expression changes dependent on gestational age are enriched in signal transduction pathways, such as Hedgehog and in genes with roles in cytokine signalling and angiogenesis. We show that some of the gene expression changes we report are reflected in the epigenome. Conclusions We studied the umbilical cord which is peripheral to disease susceptible tissues. The results suggest that soma-wide transcriptome changes, preserved at the epigenetic level, may be a mechanism whereby birth outcomes are linked to the risk of adult metabolic and arthritic disease and suggest that greater attention be given to the association between premature birth and later disease risk.


Scientific Reports | 2016

ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs

Michelle H.C. Lee; Anna Goralczyk; Rókus Kriszt; Xiu Min Ang; Cedric Badowski; Ying Li; Scott A. Summers; Sue-Anne Toh; M. Shabeer Yassin; Asim Shabbir; Allan Sheppard; Michael Raghunath

Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced ‘browning’ in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.


Journal of Clinical Medicine | 2015

MicroRNA Expression Relating to Dietary-Induced Liver Steatosis and NASH.

Aida Zarfeshani; Sherry Ngo; Allan Sheppard

Health issues associated with excessive caloric intake and sedentary lifestyle are driving a modern “epidemic” of liver disease. Initially presenting in the clinic as an excessive accumulation of fat within hepatocyte cells (steatosis), the progression to more severe non-alcoholic steatohepatitis (NASH) in which liver damage and inflammation are overt features, is becoming increasingly common. Often developing as a sequela of obesity, non-alcoholic fatty liver disease (NAFLD) arises in almost one-third of people initially carrying excess hepatic fat and is likely the result of the liver’s limited capacity to cope with the modern-day levels of dietary fatty acids circulating in the blood. While routine imaging can readily assess the presence and level of “extra-hepatic fat”, a proper diagnosis of disease progression to NASH is currently only possible by liver biopsy. A general reluctance to undergo such screening means that the prevalence of NASH is likely to be under reported and, thus, risk assessment for future metabolic syndrome (MetS) markedly compromised. The seemingly inevitable progression to overt insulin resistance that characterizes MetS may in part be the consequence of the body’s attempt to cope with NAFLD by driving systemic insulin sensitivity and, thus, fatty acid breakdown. The potential significance of miRNAs in both physiological homeostasis and pathogenesis is increasingly appreciated and in the liver may contribute specifically to the regulation of lipid pathways and NAFLD progression. As such, they may have utility as molecular indicators for the accurate profiling of both initial risk and disease progression from simple steatosis to NASH, and further to fibrosis/cirrhosis.

Collaboration


Dive into the Allan Sheppard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherry Ngo

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C Cooper

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith M. Godfrey

University Hospital Southampton NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Emma Garratt

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hazel Inskip

University Hospital Southampton NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Mark A. Hanson

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge