Allan Surgenor
University of Hertfordshire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Allan Surgenor.
Journal of Medicinal Chemistry | 2009
Paul Brough; Xavier Barril; Jenifer Borgognoni; Patrick Chène; Nicholas Gareth Morse Davies; Ben Davis; Martin J. Drysdale; Brian W. Dymock; Suzanne A. Eccles; Carlos Garcia-Echeverria; Christophe Fromont; Angela Hayes; Roderick E. Hubbard; Allan M. Jordan; Michael Rugaard Jensen; Andrew Massey; Angela Merrett; Antony Padfield; Rachel Parsons; Thomas Radimerski; Florence I. Raynaud; Alan Robertson; Stephen D. Roughley; Joseph Schoepfer; Heather Simmonite; Swee Y. Sharp; Allan Surgenor; Melanie Valenti; Steven Walls; Paul Webb
Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe novel 2-aminothieno[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors, which were designed by combining structural elements of distinct low affinity hits generated from fragment-based and in silico screening exercises in concert with structural information from X-ray protein crystallography. Examples from this series have high affinity (IC50 = 50-100 nM) for Hsp90 as measured in a fluorescence polarization (FP) competitive binding assay and are active in human cancer cell lines where they inhibit cell proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72. Several examples (34a, 34d and 34i) caused tumor growth regression at well tolerated doses when administered orally in a human BT474 human breast cancer xenograft model.
Journal of Medicinal Chemistry | 2009
Douglas S. Williamson; Jenifer Borgognoni; Alexandra Clay; Zoe Daniels; Pawel Dokurno; Martin J. Drysdale; Nicolas Foloppe; Geraint L. Francis; Christopher John Graham; Rob Howes; Alba T. Macias; James B. Murray; Rachel Parsons; Terry Shaw; Allan Surgenor; Lindsey Terry; Yikang Wang; Mike Wood; Andrew Massey
The design and synthesis of novel adenosine-derived inhibitors of HSP70, guided by modeling and X-ray crystallographic structures of these compounds in complex with HSC70/BAG-1, is described. Examples exhibited submicromolar affinity for HSP70, were highly selective over HSP90, and some displayed potency against HCT116 cells. Exposure of compound 12 to HCT116 cells caused significant reduction in cellular levels of Raf-1 and Her2 at concentrations similar to that which caused cell growth arrest.
Molecular Cancer Therapeutics | 2007
Swee Y. Sharp; Chrisostomos Prodromou; Kathy Boxall; Marissa V. Powers; Joanna L. Holmes; Gary Box; Thomas P. Matthews; Kwai-Ming J. Cheung; Andrew Kalusa; Karen Ellis James; Angela Hayes; Anthea Hardcastle; Brian W. Dymock; Paul Brough; Xavier Barril; Julie E. Cansfield; Lisa Wright; Allan Surgenor; Nicolas Foloppe; Roderick E. Hubbard; Wynne Aherne; Laurence H. Pearl; Keith Jones; Edward McDonald; Florence I. Raynaud; Sue Eccles; Martin J. Drysdale; Paul Workman
Although the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) shows clinical promise, potential limitations encourage development of alternative chemotypes. We discovered the 3,4-diarylpyrazole resorcinol CCT018159 by high-throughput screening and used structure-based design to generate more potent pyrazole amide analogues, exemplified by VER-49009. Here, we describe the detailed biological properties of VER-49009 and the corresponding isoxazole VER-50589. X-ray crystallography showed a virtually identical HSP90 binding mode. However, the dissociation constant (Kd) of VER-50589 was 4.5 ± 2.2 nmol/L compared with 78.0 ± 10.4 nmol/L for VER-49009, attributable to higher enthalpy for VER-50589 binding. A competitive binding assay gave a lower IC50 of 21 ± 4 nmol/L for VER-50589 compared with 47 ± 9 nmol/L for VER-49009. Cellular uptake of VER-50589 was 4-fold greater than for VER-49009. Mean cellular antiproliferative GI50 values for VER-50589 and VER-49009 for a human cancer cell line panel were 78 ± 15 and 685 ± 119 nmol/L, respectively, showing a 9-fold potency gain for the isoxazole. Unlike 17-AAG, but as with CCT018159, cellular potency of these analogues was independent of NAD(P)H:quinone oxidoreductase 1/DT-diaphorase and P-glycoprotein expression. Consistent with HSP90 inhibition, VER-50589 and VER-49009 caused induction of HSP72 and HSP27 alongside depletion of client proteins, including C-RAF, B-RAF, and survivin, and the protein arginine methyltransferase PRMT5. Both caused cell cycle arrest and apoptosis. Extent and duration of pharmacodynamic changes in an orthotopic human ovarian carcinoma model confirmed the superiority of VER-50589 over VER-49009. VER-50589 accumulated in HCT116 human colon cancer xenografts at levels above the cellular GI50 for 24 h, resulting in 30% growth inhibition. The results indicate the therapeutic potential of the resorcinylic pyrazole/isoxazole amide analogues as HSP90 inhibitors. [Mol Cancer Ther 2007;6(4):1198–211]
Journal of Medicinal Chemistry | 2011
Alba T. Macias; Douglas S. Williamson; Nicola Allen; Jenifer Borgognoni; Alexandra Clay; Zoe Daniels; Pawel Dokurno; Martin J. Drysdale; Geraint L. Francis; Christopher John Graham; Rob Howes; Natalia Matassova; James B. Murray; Rachel Parsons; Terry Shaw; Allan Surgenor; Lindsey Terry; Yikang Wang; Mike Wood; Andrew Massey
78 kDa glucose-regulated protein (Grp78) is a heat shock protein (HSP) involved in protein folding that plays a role in cancer cell proliferation. Binding of adenosine-derived inhibitors to Grp78 was characterized by surface plasmon resonance and isothermal titration calorimetry. The most potent compounds were 13 (VER-155008) with K(D) = 80 nM and 14 with K(D) = 60 nM. X-ray crystal structures of Grp78 bound to ATP, ADPnP, and adenosine derivative 10 revealed differences in the binding site between Grp78 and homologous proteins.
Bioorganic & Medicinal Chemistry Letters | 2010
Andrew J. Potter; Victoria Oldfield; Claire L. Nunns; Christophe Fromont; Stuart Ray; Christopher J. Northfield; Christopher J. Bryant; Simon F. Scrace; David M. Robinson; Natalia Matossova; Lisa Baker; Pawel Dokurno; Allan Surgenor; Ben Davis; Christine M. Richardson; James B. Murray; Jonathan D. Moore
Pin1 is an emerging oncology target strongly implicated in Ras and ErbB2-mediated tumourigenesis. Pin1 isomerizes bonds linking phospho-serine/threonine moieties to proline enabling it to play a key role in proline-directed kinase signalling. Here we report a novel series of Pin1 inhibitors based on a phenyl imidazole acid core that contains sub-μM inhibitors. Compounds have been identified that block prostate cancer cell growth under conditions where Pin1 is essential.
Bioorganic & Medicinal Chemistry Letters | 2010
Andrew J. Potter; Stuart Ray; Louisa Gueritz; Claire L. Nunns; Christopher J. Bryant; Simon F. Scrace; Natalia Matassova; Lisa Baker; Pawel Dokurno; David A. Robinson; Allan Surgenor; Ben Davis; James B. Murray; Christine M. Richardson; Jonathan D. Moore
The peptidyl prolyl cis/trans isomerase Pin1 is a promising molecular target for anti-cancer therapeutics. Here we report the structure-guided evolution of an indole 2-carboxylic acid fragment hit into a series of alpha-benzimidazolyl-substituted amino acids. Examples inhibited Pin1 activity with IC(50) <100nM, but were inactive on cells. Replacement of the benzimidazole ring with a naphthyl group resulted in a 10-50-fold loss in ligand potency, but these examples downregulated biomarkers of Pin1 activity and blocked proliferation of PC3 cells.
Bioorganic & Medicinal Chemistry | 2012
Nicholas Gareth Morse Davies; Helen Browne; Ben Davis; Martin J. Drysdale; Nicolas Foloppe; Stephanie Geoffrey; Ben Gibbons; Terance Hart; Roderick E. Hubbard; Michael Rugaard Jensen; Howard L. Mansell; Andrew Massey; Natalia Matassova; Jonathan D. Moore; James B. Murray; Robert M. Pratt; Stuart Ray; Alan Duncan Robertson; Stephen D. Roughley; Joseph Schoepfer; Kirsten Scriven; Heather Simmonite; Stephen Stokes; Allan Surgenor; Paul Webb; Mike Wood; Lisa Wright; Paul Brough
Inhibitors of the Hsp90 molecular chaperone are showing promise as anti-cancer agents. Here we describe a series of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors that were identified following structure-driven optimization of purine hits revealed by NMR based screening of a proprietary fragment library. Ligand-Hsp90 X-ray structures combined with molecular modeling led to the rational displacement of a conserved water molecule leading to enhanced affinity for Hsp90 as measured by fluorescence polarization, isothermal titration calorimetry and surface plasmon resonance assays. This displacement was achieved with a nitrile group, presenting an example of efficient gain in binding affinity with minimal increase in molecular weight. Some compounds in this chemical series inhibit the proliferation of human cancer cell lines in vitro and cause depletion of oncogenic Hsp90 client proteins and concomitant elevation of the co-chaperone Hsp70. In addition, one compound was demonstrated to be orally bioavailable in the mouse. This work demonstrates the power of structure-based design for the rapid evolution of potent Hsp90 inhibitors and the importance of considering conserved water molecules in drug design.
Bioorganic & Medicinal Chemistry Letters | 2002
Christopher J. Hobbs; Rino A. Bit; Andrew Cansfield; Bill Harris; Christopher Huw Hill; Katherine L. Hilyard; Ian R. Kilford; Eric Argirios Kitas; Antonin Kroehn; Peter Lovell; David Pole; Paul Rugman; Brad S. Sherborne; Ian Edward David Smith; David R. Vesey; D.Lee Walmsley; David Whittaker; Glyn Williams; Fiona Wilson; David W. Banner; Allan Surgenor; Neera Borkakoti
Starting from the tetrapeptide Ac-pYEEI-NHMe and using a structure-based approach, we have designed and synthesised a peptidomimetic ligand for p56(lck) SH2 domain containing a conformationally restricted replacement for the two glutamate residues. We have explored replacments for the isoleucine residue in the pY+3 pocket and thus identified 1-(R)-amino-3-(S)-indaneacetic acid as the most potent replacement. We also report the X-ray crystal structures of two of the antagonists.
Journal of Medicinal Chemistry | 2017
Paul Brough; Lisa Baker; Simon Bedford; Kirsten Brown; Seema Chavda; Victoria Chell; Jalanie D’Alessandro; Nicholas Gareth Morse Davies; Ben Davis; Loic le Strat; Alba T. Macias; Daniel Maddox; Patrick C. Mahon; Andrew Massey; Natalia Matassova; Sean McKenna; Johannes W. G. Meissner; Jonathan D. Moore; James B. Murray; Christopher J. Northfield; Charles Parry; Rachel Parsons; Stephen D. Roughley; Terry Shaw; Heather Simmonite; Stephen Stokes; Allan Surgenor; Emma Stefaniak; Alan Duncan Robertson; Yikang Wang
Libraries of nonpurified resorcinol amide derivatives were screened by surface plasmon resonance (SPR) to determine the binding dissociation constant (off-rate, kd) for compounds binding to the pyruvate dehydrogenase kinase (PDHK) enzyme. Parallel off-rate measurements against HSP90 and application of structure-based drug design enabled rapid hit to lead progression in a program to identify pan-isoform ATP-competitive inhibitors of PDHK. Lead optimization identified selective sub-100-nM inhibitors of the enzyme which significantly reduced phosphorylation of the E1α subunit in the PC3 cancer cell line in vitro.
Journal of Medicinal Chemistry | 2017
Douglas S. Williamson; Garrick Paul Smith; Pamela Acheson-Dossang; Simon Bedford; Victoria Chell; I-Jen Chen; Justus Claus Alfred Daechsel; Zoe Daniels; Laurent David; Pawel Dokurno; Morten Hentzer; Martin Christian Herzig; Roderick E. Hubbard; Jonathan D. Moore; James B. Murray; Samantha Newland; Stuart Ray; Terry Shaw; Allan Surgenor; Lindsey Terry; Kenneth Thirstrup; Yikang Wang; Kenneth Vielsted Christensen
Mutations in leucine-rich repeat kinase 2 (LRRK2), such as G2019S, are associated with an increased risk of developing Parkinsons disease. Surrogates for the LRRK2 kinase domain based on checkpoint kinase 1 (CHK1) mutants were designed, expressed in insect cells infected with baculovirus, purified, and crystallized. X-ray structures of the surrogates complexed with known LRRK2 inhibitors rationalized compound potency and selectivity. The CHK1 10-point mutant was preferred, following assessment of surrogate binding affinity with LRRK2 inhibitors. Fragment hit-derived arylpyrrolo[2,3-b]pyridine LRRK2 inhibitors underwent structure-guided optimization using this crystallographic surrogate. LRRK2-pSer935 HEK293 IC50 data for 22 were consistent with binding to Ala2016 in LRRK2 (equivalent to Ala147 in CHK1 10-point mutant structure). Compound 22 was shown to be potent, moderately selective, orally available, and brain-penetrant in wild-type mice, and confirmation of target engagement was demonstrated, with LRRK2-pSer935 IC50 values for 22 in mouse brain and kidney being 1.3 and 5 nM, respectively.