Allard Wagenaar
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Allard Wagenaar.
Circulation | 2010
Marlies Oostendorp; Kim Douma; Allard Wagenaar; Jos Slenter; Tilman M. Hackeng; Marc A. M. J. van Zandvoort; Mark J. Post; Walter H. Backes
Background— Angiogenesis is a natural mechanism to restore perfusion to the ischemic myocardium after acute myocardial infarction (MI). Therapeutic angiogenesis is being explored as a novel treatment for MI patients; however, sensitive, noninvasive in vivo measures of therapeutic efficacy are lacking and need to be developed. Here, a molecular magnetic resonance imaging method is presented to noninvasively image angiogenic activity in vivo in a murine model of MI with cyclic Asn-Gly-Arg (cNGR)–labeled paramagnetic quantum dots (pQDs). The tripeptide cNGR homes specifically to CD13, an aminopeptidase that is strongly upregulated during myocardial angiogenesis. Methods and Results— Acute MI was induced in male Swiss mice via permanent ligation of the left anterior descending coronary artery. Molecular magnetic resonance imaging was performed 7 days after surgery and up to 2 hours after intravenous contrast agent administration. Injection of cNGR-pQDs resulted in a strong negative contrast that was located mainly in the infarcted myocardium. This negative contrast was significantly less in MI mice injected with unlabeled pQDs and in sham-operated mice injected with cNGR-pQDs. Validation with ex vivo 2-photon laser scanning microscopy revealed a strong colocalization of cNGR-pQDs with vascular endothelial cells, whereas unlabeled pQDs were mostly extravasated and diffused through the tissue. Additionally, 2-photon laser scanning microscopy demonstrated significant microvascular remodeling in the infarct/border zones compared with remote myocardium. Conclusions— cNGR-pQDs allow selective, noninvasive detection of angiogenic activity in the infarcted heart with the use of in vivo molecular magnetic resonance imaging and ex vivo 2-photon laser scanning microscopy.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2011
Vincenza Caolo; Henny Schulten; Zhen W. Zhuang; Masahiro Murakami; Allard Wagenaar; Sanne Verbruggen; Daniel G. M. Molin; Mark J. Post
Objective—Notch has been implicated in neointima formation as reflected by increased Notch/Jagged expression on vascular injury and the promigratory effect of Notch signaling on smooth muscle cells. Soluble Jagged-1 (sJag1) has been shown to inhibit Notch signaling in vitro; however, its capacity to suppress neointima formation remains unknown. Methods and Results—Balloon injury of rat carotid arteries induced Notch1, Notch3, and Jagged-1 expression at days 3 and 14 postinjury. Notch signaling was activated as shown by increased expression of the Notch target gene Herp2. Adenoviral sJag1 (Ad-sJag1) transfection reduced neointima formation in carotid artery and enhanced reendothelialization, whereas adenoviral full-length Jagged-1 (Ad-Fl-Jag1) or LacZ had no effect. Injury-induced Herp2 expression was absent in vessels treated with Ad-sJag1. Consistently, Herp2 expression was reduced in Ad-sJag1-infected or recombinant sJag1 –treated coronary artery smooth muscle cells (CASMCs). Ad-sJag1 had no effect on human umbilical endothelial cell behavior, but it significantly reduced proliferation and migration of CASMCs. Overexpression of Herp2 in sJag1-treated CASMCs rescued the migratory and proliferative capacity in vitro. Conclusion—Our results demonstrate that sJag1 can inhibit neointima formation after balloon injury by decreasing smooth muscle cell proliferation and migration through interference with Notch-Herp2 signaling.
PLOS ONE | 2013
Nadine Jetten; Marjo M. P. C. Donners; Allard Wagenaar; Jack P.M. Cleutjens; Nico van Rooijen; Menno P.J. de Winther; Mark J. Post
Aims Enhancement of collateral development in coronary or peripheral artery disease is a therapeutic target, but it has proven difficult to achieve. Macrophages are key players in collateral remodeling, yet the effect of different macrophage subsets on arteriogenesis has not been investigated. Methods and Results Murine macrophages were cultured from bone marrow and polarized into M1 (IFNγ), M2a (IL-4) or M2c (IL-10) subsets. C57BL/6 mice underwent femoral artery ligation followed by intramuscular injection of macrophage subsets. Using eGFP expressing macrophages, cells could be detected at least 6 days after ligation and were located in the perivascular space of collateral vessels. After 14 days, perfusion ratio was increased in animals treated with M1 as well as M2a and M2c macrophages compared to control. Depletion of circulating monocytes by clodronate liposome injections did not hamper reperfusion recovery, however, treatment with exogenous polarized macrophages improved perfusion ratio after 14 days again. We used IL10Rfl/fl/LysMCre+ mice to study the effect of inhibition of endogenous polarization towards specifically M2c macrophages on arteriogenesis. Deletion of the IL10-receptor (IL10R) in the myeloid lineage did not affect reperfusion recovery, yet the pro-arteriogenic effect of exogenously injected M2c macrophages was still present. Conclusions Local injection of polarized macrophages promotes reperfusion recovery after femoral artery ligation and is not influenced by depletion of circulatory monocytes. Preventing endogenous M2c polarization did not affect reperfusion recovery suggesting that M2c’s are not required for collateralization, but are sufficient to induce collateral formation upon exogenous administration. This is the first study using local injection of macrophage subsets showing the pro-arteriogenic effect of polarized macrophages.
Angiogenesis | 2015
Vincenza Caolo; Geertje Swennen; Athena Chalaris; Allard Wagenaar; Sanne Verbruggen; Stefan Rose-John; Daniel G. M. Molin; Marc Vooijs; Mark J. Post
During angiogenesis, endothelial tip cells start sprouting and express delta-like 4 (DLL4) downstream of vascular endothelial growth factor (VEGF). DLL4 subsequently activates Notch in the adjacent stalk cells suppressing sprouting. VEGF also activates A disintegrin and metalloproteases (ADAMs) that induce Notch ectodomain shedding. Although two major ADAMs, i.e. ADAM10 and ADAM17, have been implicated in Notch-signalling activation, their apparent different roles in angiogenesis have not been fully understood yet. The objective of this study was to determine the roles of ADAM10 and ADAM17 activity in angiogenesis. In mouse retinas, ADAM10 or γ-secretase inhibition induced vascular sprouting and density in vivo, whereas attenuation of both ADAM10 and ADAM17 activity produced the opposite phenotype. Retinal blood vessel analysis in ADAM17 hypomorphic mice confirmed the requirement for ADAM17 activity in angiogenesis. However, ADAM17 inhibition did not phenocopy blood vessel increase by Notch blockage. These observations suggest that ADAM17 regulates other fundamental players during angiogenesis besides Notch, which were not affected by ADAM10. By means of an angiogenesis proteome assay, we found that ADAM17 inhibition induced the expression of a naturally occurring inhibitor of angiogenesis Thrombospondin 1 (TSP1), whereas ADAM10 inhibition did not. Accordingly, ADAM17 overexpression downregulated TSP1 expression, and the TSP1 inhibitor LSKL rescued angiogenesis in the tube formation assay downstream of VEGF in the presence of ADAM17 inhibition. Finally, genetic and pharmacological ADAM17 blockade resulted in increased TSP1 expression in mouse retina. Altogether, our results show that ADAM10 and ADAM17 have opposite effects on sprouting angiogenesis that may be unrelated to Notch signalling and involves differentially expressed anti-angiogenic proteins such as TSP1.
PLOS ONE | 2016
Irma L. Geenen; Felix F. Kolk; Daniel G. M. Molin; Allard Wagenaar; Mathijs G. Compeer; Jan H. M. Tordoir; Geert W. Schurink; Jo G. R. De Mey; Mark J. Post
Background Autologous arteriovenous (AV) fistulas are the first choice for vascular access but have a high risk of non-maturation due to insufficient vessel adaptation, a process dependent on nitric oxide (NO)-signaling. Chronic kidney disease (CKD) is associated with oxidative stress that can disturb NO-signaling. Here, we evaluated the influence of CKD on AV fistula maturation and NO-signaling. Methods CKD was established in rats by a 5/6th nephrectomy and after 6 weeks, an AV fistula was created between the carotid artery and jugular vein, which was followed up at 3 weeks with ultrasound and flow assessments. Vessel wall histology was assessed afterwards and vasoreactivity of carotid arteries was studied in a wire myograph. The soluble guanylate cyclase (sGC) activator BAY 60–2770 was administered daily to CKD animals for 3 weeks to enhance fistula maturation. Results CKD animals showed lower flow rates, smaller fistula diameters and increased oxidative stress levels in the vessel wall. Endothelium-dependent relaxation was comparable but vasorelaxation after sodium nitroprusside was diminished in CKD vessels, indicating NO resistance of the NO-receptor sGC. This was confirmed by stimulation with BAY 60–2770 resulting in increased vasorelaxation in CKD vessels. Oral administration of BAY 60–2770 to CKD animals induced larger fistula diameters, however; flow was not significantly different from vehicle-treated CKD animals. Conclusions CKD induces oxidative stress resulting in NO resistance that can hamper AV fistula maturation. sGC activators like BAY 60–2770 could offer therapeutic potential to increase AV fistula maturation.
Angiogenesis | 2015
Mark H. M. Vries; Allard Wagenaar; Sanne Verbruggen; Daniel G. M. Molin; Ingrid Dijkgraaf; Tilman H. Hackeng; Mark J. Post
Aims The mechanisms of monocyte recruitment to arteriogenic collaterals are largely unknown. We investigated the role of chemokine (C-X-C-motif) ligand 1 (CXCL1) and its cognate receptor, chemokine (C-X-C-motif) receptor 2 (CXCR2) in arteriogenesis. Methods and results After femoral artery ligation in Sprague–Dawley rats, either native collaterals were harvested or placebo, CXCL1 or CXCR2 blocker was administered via an osmopump. Perfusion recovery was measured with Laser Doppler, leukocyte populations were analyzed by fluorescence-activated cell sorting, and hind limb sections were stained for macrophage marker cluster of differentiation 68 (CD68). In vitro, fluorescent CXCL1 or human acute monocytic leukemia cell line (THP-1) monocytic cells were flown over shear-stressed endothelium. CXCL1 mRNA expression in collaterals was dramatically upregulated already 1 h after ligation (ratio ligated/sham 5.73). CD68 mRNA was upregulated from 12 h until 3 days after ligation (peak ratio ligated/sham 2.65). CXCL1 treatment augmented perfusion recovery at 3 and 7 days (p \ 0.05) after ligation, and a significant increase in the number of peri-collateral macrophages was evident concomitantly (p \ 0.05). Conversely, CXCR2 antagonist treatment caused a decrease in perfusion recovery both at 7 and 10 days postligation (p = 0.01) and also significantly reduced the number of pericollateral macrophages (p \ 0.05). In vitro, CXCL1 tethered to and was taken up by endothelial cells under shear stress conditions and enhanced THP-1 adherence compared to control (p \ 0.05). In contrast, CXCR2 antagonist compromised THP-1 adherence to endothelial cells (p \ 0.05). Conclusion CXCL1 presented on the luminal endothelial surface leads to an increase in the number of peri-collateral macrophages, thus improving the arteriogenic response after arterial ligation.
Journal of Thrombosis and Haemostasis | 2013
M. Wolters; R. H. M. van Hoof; Allard Wagenaar; Kim Douma; M. A. M. J. van Zandvoort; T. H. Hackeng; Mark J. Post; Walter H. Backes; Me Marianne Eline Kooi
M. WOLTERS ,*† R . H . M. VAN HOOF,*‡ A. WAGENAAR ,†§ K . DOUMA,† ¶ M. A . M. J . VAN ZANDVOORT ,† ¶ T . H . HACKENG,†** M. J . POST ,†§ W. H. BACKES*† and M. E . KOOI*† *Department of Radiology, Maastricht University Medical Center (MUMC+); †Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht; ‡Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven; §Department of Physiology, Maastricht University; ¶Department of Biomedical Engineering, Maastricht University; and **Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
Journal of Magnetic Resonance Imaging | 2012
Karolien Jaspers; Jos Slenter; Tim Leiner; Allard Wagenaar; Mark J. Post; Walter H. Backes
To automatically analyze the time course of collateralization in a rat hindlimb ischemia model based on signal intensity distribution (SID).
Drug Delivery | 2016
Vincenza Caolo; Mark H. M. Vries; John Zupancich; Marcel Houben; George Mihov; Allard Wagenaar; Geertje Swennen; Yael Nossent; Paul H.A. Quax; Dennis Suylen; Ingrid Dijkgraaf; Daniel G. M. Molin; Tilman M. Hackeng; Mark J. Post
Abstract Context: After arterial occlusion, diametrical growth of pre-existing natural bypasses around the obstruction, i.e. arteriogenesis, is the body’s main coping mechanism. We have shown before that continuous infusion of chemokine (C-X-C motif) ligand 1 (CXCL1) promotes arteriogenesis in a rodent hind limb ischemia model. Objective: For clinical translation of these positive results, we developed a new administration strategy of local and sustained delivery. Here, we investigate the therapeutic potential of CXCL1 in a drug delivery system based on microspheres. Materials and methods: We generated poly(ester amide) (PEA) microspheres loaded with CXCL1 and evaluated them in vitro for cellular toxicity and chemokine release characteristics. In vivo, murine femoral arteries were ligated and CXCL1 was administered either intra-arterially via osmopump or intramuscularly encapsulated in biodegradable microspheres. Perfusion recovery was measured with Laser-Doppler. Results: The developed microspheres were not cytotoxic and displayed a sustained chemokine release up to 28 d in vitro. The amount of released CXCL1 was 100-fold higher than levels in native ligated hind limb. Also, the CXCL1-loaded microspheres significantly enhanced perfusion recovery at day 7 after ligation compared with both saline and non-loaded conditions (55.4 ± 5.0% CXCL1-loaded microspheres versus 43.1 ± 4.5% non-loaded microspheres; n = 8–9; p < 0.05). On day 21 after ligation, the CXCL1-loaded microspheres performed even better than continuous CXCL1 administration (102.1 ± 4.4% CXCL1-loaded microspheres versus 85.7 ± 4.8% CXCL1 osmopump; n = 9; p < 0.05). Conclusion: Our results demonstrate a proof of concept that sustained, local delivery of CXCL1 encapsulated in PEA microspheres provides a new tool to stimulate arteriogenesis in vivo.
Lab Animal | 2016
Allard Wagenaar; Viviane V. T. Heijnen; Mark J. Post
Small animal models of myocardial infarction are used for a wide variety of research purposes, but common techniques for generating such models require thoracic surgeries that increase mortality risk and damage important structures, such as the pericardial sac. Here, we describe a technique for modeling myocardial infarction in rats by selective coronary microembolization, which has hitherto been described only in large animals. This technique selectively catheterizes the left coronary artery using a custom-made catheter that is introduced and precisely placed under fluoroscopic guidance. Microspheres are then injected through the catheter to cause embolization. This process creates multiple simultaneous micro-infarcts that resemble those from clinical embolization after a percutaneous coronary intervention. As this technique does not require thoracic surgery, a low attrition rate was expected and once it was optimized, this technique had a low mortality rate of just 14% during experimental application. This technique creates infarcts that appear small but are associated with transient ECG changes and a persistently lower ejection fraction after embolization. Microspheres are retained in the myocardial tissue and are visible by epifluorescent microscopy after histological staining and recognizable as a distinct speckle pattern in ultrasound images.