Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allen C. Clermont is active.

Publication


Featured researches published by Allen C. Clermont.


Science | 1996

Amelioration of Vascular Dysfunctions in Diabetic Rats by an Oral PKC β Inhibitor

Hidehiro Ishii; Michael R. Jirousek; Daisuke Koya; Chikako Takagi; Pu Xia; Allen C. Clermont; Sven Erik Bursell; Timothy S. Kern; Lawrence M. Ballas; William F. Heath; Lawrence E. Stramm; Edward P. Feener; George L. King

The vascular complications of diabetes mellitus have been correlated with enhanced activation of protein kinase C (PKC). LY333531, a specific inhibitor of the β isoform of PKC, was synthesized and was shown to be a competitive reversible inhibitor of PKC β1 and β2, with a half-maximal inhibitory constant of ∼5 nM; this value was one-fiftieth of that for other PKC isoenzymes and one-thousandth of that for non-PKC kinases. When administered orally, LY333531 ameliorated the glomerular filtration rate, albumin excretion rate, and retinal circulation in diabetic rats in a dose-responsive manner, in parallel with its inhibition of PKC activities.


Diabetes | 1997

Vascular Endothelial Growth Factor–Induced Retinal Permeability Is Mediated by Protein Kinase C In Vivo and Suppressed by an Orally Effective β-Isoform–Selective Inhibitor

Lloyd Paul Aiello; Sven Erik Bursell; Allen C. Clermont; Elia J. Duh; Hidehiro Ishii; Chikako Takagi; Fumi Mori; Thomas A. Ciulla; Kirk Ways; Michael R. Jirousek; Lois E. H. Smith; George L. King

Increased vascular permeability and excessive neovas-cularization are the hallmarks of endothelial dysfunction, which can lead to diabetic macular edema and proliferative diabetic retinopathy in the eye. Vascular endothelial growth factor (VEGF) is an important mediator of ocular neovascularization and a known vasopermeability factor in nonocular tissues. In these studies, we demonstrate that intravitreal injection of VEGF rapidly activates protein kinase C (PKC) in the retina at concentrations observed clinically, inducing membrane translocation of PKC isoforms α, βII, and δ and > threefold increases in retinal vasopermeability in vivo. The effect of VEGF on retinal vascular permeability appears to be mediated predominantly by the β-isoform of PKC with >95% inhibition of VEGF-induced permeability by intravitreal or oral administration of a PKC β-isoform-selective inhibitor that did not inhibit histamine-mediated effects. These studies represent the first direct demonstration that VEGF can increase intraocular vascular permeability through activation of PKC in vivo and suggest that oral pharmacological therapies involving PKC β-isoform-selective inhibitors may prove efficacious for the treatment of VEGF-asso-ciated ocular disorders such as diabetic retinopathy.


Nature Medicine | 2009

Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy

Pedro Geraldes; Junko Hiraoka-Yamamoto; Motonobu Matsumoto; Allen C. Clermont; Michael Leitges; André Marette; Lloyd Paul Aiello; Timothy S. Kern; George L. King

Cellular apoptosis induced by hyperglycemia occurs in many vascular cells and is crucial for the initiation of diabetic pathologies. In the retina, pericyte apoptosis and the formation of acellular capillaries, the most specific vascular pathologies attributed to hyperglycemia, is linked to the loss of platelet-derived growth factor (PDGF)-mediated survival actions owing to unknown mechanisms. Here we show that hyperglycemia persistently activates protein kinase C-δ (PKC-δ, encoded by Prkcd) and p38α mitogen-activated protein kinase (MAPK) to increase the expression of a previously unknown target of PKC-δ signaling, Src homology-2 domain–containing phosphatase-1 (SHP-1), a protein tyrosine phosphatase. This signaling cascade leads to PDGF receptor-β dephosphorylation and a reduction in downstream signaling from this receptor, resulting in pericyte apoptosis independently of nuclear factor-κB (NF-κB) signaling. We observed increased PKC-δ activity and an increase in the number of acellular capillaries in diabetic mouse retinas, which were not reversible with insulin treatment that achieved normoglycemia. Unlike diabetic age-matched wild-type mice, diabetic Prkcd−/− mice did not show activation of p38α MAPK or SHP-1, inhibition of PDGF signaling in vascular cells or the presence of acellular capillaries. We also observed PKC-δ, p38α MAPK and SHP-1 activation in brain pericytes and in the renal cortex of diabetic mice. These findings elucidate a new signaling pathway by which hyperglycemia can induce PDGF resistance and increase vascular cell apoptosis to cause diabetic vascular complications.


Ophthalmology | 2001

Stereo nonmydriatic digital-video color retinal imaging compared with Early Treatment Diabetic Retinopathy Study seven standard field 35-mm stereo color photos for determining level of diabetic retinopathy.

Sven-Erik Bursell; Jerry D. Cavallerano; Anthony Cavallerano; Allen C. Clermont; Deborah Birkmire-Peters; Lloyd Paul Aiello; Lloyd M. Aiello

OBJECTIVE To evaluate the ability to determine clinical levels of diabetic retinopathy, timing of next appropriate retinal evaluation, and necessity of referral to ophthalmology specialists using stereoscopic nonmydriatic digital-video color retinal images as compared with Early Treatment Diabetic Retinopathy Study (ETDRS) seven standard field 35-mm stereoscopic color fundus photographs. DESIGN Prospective, clinic-based, comparative instrument validation study. PARTICIPANTS Fifty-four patients (108 eyes) with type 1 or type 2 diabetes mellitus selected after chart review from a single center to include the full spectrum of diabetic retinopathy. METHODS Nonsimultaneous 45 degrees -field stereoscopic digital-video color images (JVN images) were obtained from three fields with the Joslin Vision Network (JVN) system before pupil dilation. Following pupil dilation, ETDRS seven standard field 35-mm stereoscopic color 30 degrees fundus photographs (ETDRS photos) were obtained. Joslin Vision Network images and ETDRS photos were graded on a lesion-by-lesion basis by two independent, masked readers to assess ETDRS clinical level of diabetic retinopathy. An independent ophthalmology retina specialist adjudicated interreader disagreements in a masked fashion. MAIN OUTCOME MEASURES Determination of ETDRS clinical level of diabetic retinopathy, timing of next ophthalmic evaluation of diabetic retinopathy, and need for prompt referral to ophthalmology specialist. RESULTS There was substantial agreement (kappa = 0.65) between the clinical level of diabetic retinopathy assessed from the undilated JVN images and the dilated ETDRS photos. Agreement was excellent (kappa = 0.87) for suggested referral to ophthalmology specialists for eye examinations. Comparison of individual lesions between the JVN images and the ETDRS photos and for interreader comparisons were comparable to the prior ETDRS study. CONCLUSIONS Undilated digital-video images using the JVN system were comparable photographs for the determination of diabetic retinopathy level. The results validate the agreement between nonmydriatic JVN images and dilated ETDRS photographs and suggest that this digital technique may be an effective telemedicine tool for remotely determining the level of diabetic retinopathy, suggesting timing of next retinal evaluation and identifying the need for prompt referral to ophthalmology specialists. Thus, the JVN system would be an appropriate tool for facilitating increased access of diabetic patients into recommended eye evaluations, but should not be construed as a paradigm that would replace the need for comprehensive eye examinations.


Nature Medicine | 2007

Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation

Ben-Bo Gao; Allen C. Clermont; Susan L. Rook; Stephanie J. Fonda; Vivek J. Srinivasan; Maciej Wojtkowski; James G. Fujimoto; Robert L. Avery; Paul G. Arrigg; Sven-Erik Bursell; Lloyd Paul Aiello; Edward P. Feener

Excessive retinal vascular permeability contributes to the pathogenesis of proliferative diabetic retinopathy and diabetic macular edema, leading causes of vision loss in working-age adults. Using mass spectroscopy–based proteomics, we detected 117 proteins in human vitreous and elevated levels of extracellular carbonic anhydrase-I (CA-I) in vitreous from individuals with diabetic retinopathy, suggesting that retinal hemorrhage and erythrocyte lysis contribute to the diabetic vitreous proteome. Intravitreous injection of CA-I in rats increased retinal vessel leakage and caused intraretinal edema. CA-I–induced alkalinization of vitreous increased kallikrein activity and its generation of factor XIIa, revealing a new pathway for contact system activation. CA-I–induced retinal edema was decreased by complement 1 inhibitor, neutralizing antibody to prekallikrein and bradykinin receptor antagonism. Subdural infusion of CA-I in rats induced cerebral vascular permeability, suggesting that extracellular CA-I could have broad relevance to neurovascular edema. Inhibition of extracellular CA-I and kallikrein-mediated innate inflammation could provide new therapeutic opportunities for the treatment of hemorrhage-induced retinal and cerebral edema.


Cell Metabolism | 2010

Loss of Insulin Signaling in Vascular Endothelial Cells Accelerates Atherosclerosis in Apolipoprotein E Null Mice

Christian Rask-Madsen; Qian Li; Bryn Freund; Danielle Feather; Roman Abramov; I-Hsien Wu; Kai Chen; Junko Yamamoto-Hiraoka; Jan Goldenbogen; Konstantinos B. Sotiropoulos; Allen C. Clermont; Pedro Geraldes; Claudia Dall'Osso; Amy J. Wagers; Paul L. Huang; Mark Rekhter; Rosario Scalia; C. Ronald Kahn; George L. King

To determine whether insulin action on endothelial cells promotes or protects against atherosclerosis, we generated apolipoprotein E null mice in which the insulin receptor gene was intact or conditionally deleted in vascular endothelial cells. Insulin sensitivity, glucose tolerance, plasma lipids, and blood pressure were not different between the two groups, but atherosclerotic lesion size was more than 2-fold higher in mice lacking endothelial insulin signaling. Endothelium-dependent vasodilation was impaired and endothelial cell VCAM-1 expression was increased in these animals. Adhesion of mononuclear cells to endothelium in vivo was increased 4-fold compared with controls but reduced to below control values by a VCAM-1-blocking antibody. These results provide definitive evidence that loss of insulin signaling in endothelium, in the absence of competing systemic risk factors, accelerates atherosclerosis. Therefore, improving insulin sensitivity in the endothelium of patients with insulin resistance or type 2 diabetes may prevent cardiovascular complications.


Diabetes | 2006

Reduction of Diabetes-Induced Oxidative Stress, Fibrotic Cytokine Expression, and Renal Dysfunction in Protein Kinase Cβ–Null Mice

Yuzuru Ohshiro; Ronald Cw Ma; Yutaka Yasuda; Junko Hiraoka-Yamamoto; Allen C. Clermont; Keiji Isshiki; Kunimasa Yagi; Emi Arikawa; Timothy S. Kern; George L. King

Diabetes induces the activation of several protein kinase C (PKC) isoforms in the renal glomeruli. We used PKC-β−/− mice to examine the action of PKC-β isoforms in diabetes-induced oxidative stress and renal injury at 8 and 24 weeks of disease. Diabetes increased PKC activity in renal cortex of wild-type mice and was significantly reduced (<50% of wild-type) in diabetic PKC-β−/− mice. In wild-type mice, diabetes increased the translocation of PKC-α and -β1 to the membrane, whereas only PKC-α was elevated in PKC-β−/− mice. Increases in urinary isoprostane and 8-hydroxydeoxyguanosine, parameters of oxidative stress, in diabetic PKC-β−/− mice were significantly reduced compared with diabetic wild-type mice. Diabetes increased NADPH oxidase activity and the expressions of p47phox, Nox2, and Nox4 mRNA levels in the renal cortex and were unchanged in diabetic PKC-β−/− mice. Increased expression of endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β, connective tissue growth factor (CTGF), and collagens IV and VI found in diabetic wild-type mice was attenuated in diabetic PKC-β−/− mice. Diabetic PKC-β−/− mice were protected from renal hypertrophy, glomerular enlargement, and hyperfiltration observed in diabetic wild-type mice and had less proteinuria. Lack of PKC-β can protect against diabetes-induced renal dysfunction, fibrosis, and increased expressions of Nox2 and -4, ET-1, VEGF, TGF-β, CTGF, and oxidant production.


American Journal of Ophthalmology | 1997

Vascular Endothelial Growth Factor and Severity of Nonproliferative Diabetic Retinopathy Mediate Retinal Hemodynamics In Vivo: A Potential Role for Vascular Endothelial Growth Factor in the Progression of Nonproliferative Diabetic Retinopathy

Allen C. Clermont; Lloyd Paul Aiello; Fumihiko Mori; Lloyd M. Aiello; Sven-Erik Bursell

PURPOSE To determine the effect of vascular endothelial growth factor and retinopathy level on retinal hemodynamics in nondiabetic and diabetic rats and to evaluate retinal hemodynamics in nondiabetic and diabetic patients. METHODS Forty-eight diabetic and 22 nondiabetic patients had their diabetic retinopathy levels determined from fundus photographs according to Early Treatment Diabetic Retinopathy Study (ETDRS). Fluorescein angiograms were recorded from the left eye by video fluorescein angiography. Retinal blood flow was calculated from the digitized angiograms. Human recombinant vascular endothelial growth factor or vehicle alone was injected intravitreally into 13 nondiabetic and 11 diabetic rats. RESULTS Retinal blood flow decreased 33% in patients with ETDRS retinopathy level 10 compared with control patients (P = .001) and increased sequentially in more advanced stages of retinopathy, with a strong correlation between retinal blood flow and retinopathy level (r2 = 0.434, P = .001). In the diabetic rats, retinal blood flow was decreased 35.6% (P = .01). Vascular endothelial growth factor maximally increased retinal blood flow by 36.1% in nondiabetic rats after 25 minutes (P = .001) and by 73.7% in diabetic rats after only 5 minutes (P = .01) and caused a greater response in diabetic than in nondiabetic rats. CONCLUSIONS Retinal blood flow increases with advancing nonproliferative diabetic retinopathy in humans, and diabetes accentuates the vascular endothelial growth factor-induced increase in retinal blood flow and venous dilation in rats. Vascular endothelial growth factor may contribute to the changes in retinal hemodynamics and morphology observed in early diabetic retinopathy.


The FASEB Journal | 2006

Adipose-specific effect of rosiglitazone on vascular permeability and protein kinase C activation: Novel mechanism for PPARγ agonist's effects on edema and weight gain

Konstantinos B. Sotiropoulos; Allen C. Clermont; Yutaka Yasuda; Christian Rask-Madsen; Motonobu Mastumoto; Junichi Takahashi; Kim Della Vecchia; Tatsuya Kondo; Lloyd Paul Aiello; George L. King

PPARγ agonists, thiazolidinediones, cause fluid retention and edema due to unknown mechanisms. We characterized the effect of rosiglitazone (RSG), a thiazolidinedione, to induce vascular permeability, vascular endothelial growth factor (VEGF) expression, and protein kinase C (PKC) activation with edema and wt gain. In lean, fatty and diabetic Zucker rats, and endothelial insulin receptor knockout mice, RSG increased wt and vascular permeability, selectively in fat and retina, but not in heart or skeletal muscle. H2O content and wt of epididymal fat were increased by RSG and correlated to increases in capillary permeability in fat and body wt. RSG induced VEGF mRNA expression and PKC activation in fat and retina up to 2.5‐fold. Ruboxistaurin, a PKCβ isoform inhibitor, in the latter 2 wk of a 4‐wk study, normalized vascular permeability in fat and decreased total wt gain, H2O content, and wt of fat vs. RSG alone but did not decrease VEGF expression, basal permeability, or food intake. Finally, RSG did not increase wt or vascular permeability in PKCβ knockout vs. control mice. Thus, thiazolidinediones effects on edema and wt are partially due to an adipose tissue‐selective activation of PKC and vascular permeability that may be prevented by PKCβ inhibition.—Sotiropoulos, K. B., Clermont, A., Yasuda, Y., Rask‐Madsen, C., Mastumoto, M., Takahashi, J., Della Vecchia, K., Kondo, T., Aiello, L. P., King, G. L. Adipose‐specific effect of rosiglitazone on vascular permeability and protein kinase C activation: Novel mechanism for PPARγ agonists effects on edema and weight gain. FASEB J. 20, E367–E380 (2006)


Current Eye Research | 1992

Evaluating Retinal Circulation Using Video Fluorescein Angiography in Control and Diabetic Rats

Sven-Erik Bursell; Allen C. Clermont; Teruo Shiba; George L. King

Video fluorescein angiography has been used to evaluate retinal circulatory parameters in diabetic and non-diabetic Sprague-Dawley rats. Video fluorescein angiograms were recorded from the retina using a modified retinal fundus camera following a 5 ul bolus injection of sodium fluorescein dye into the jugular vein. Retinal circulatory parameters were measured using computer assisted image analysis. These analyses were performed on 25 diabetic rats with 1 week duration of diabetes and 26 matched, non-diabetic, rats. There was a significant (p = .0001) increase in retinal Mean Circulation Time (MCT) in the diabetic group (1.83 +/- 0.40 s) compared to the control group (1.09 +/- 0.27 s). There were no significant differences in arterial or venous diameters comparing diabetic and control groups. In a separate paired experiment, measurements were made from the same animals both before and after one week duration of diabetes. A paired t-test analysis demonstrated significantly increased MCT times in the 6 diabetic animals (p = .001) while there was no significant differences detected in the 4 corresponding control animals. These results indicate that significant increases in retinal circulation times can be measured as early as 1 week after streptozotocin induced diabetes in this animal model.

Collaboration


Dive into the Allen C. Clermont's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Fujimoto

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D. Bursell

Joslin Diabetes Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge