Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allen G. Rodrigo is active.

Publication


Featured researches published by Allen G. Rodrigo.


Systematic Biology | 2000

Likelihood-Based Tests of Topologies in Phylogenetics

Nick Goldman; Jon P. Anderson; Allen G. Rodrigo

Likelihood-based statistical tests of competing evolutionary hypotheses (tree topologies) have been available for approximately a decade. By far the most commonly used is the Kishino-Hasegawa test. However, the assumptions that have to be made to ensure the validity of the Kishino-Hasegawa test place important restrictions on its applicability. In particular, it is only valid when the topologies being compared are specified a priori. Unfortunately, this means that the Kishino-Hasegawa test may be severely biased in many cases in which it is now commonly used: for example, in any case in which one of the competing topologies has been selected for testing because it is the maximum likelihood topology for the data set at hand. We review the theory of the Kishino-Hasegawa test and contend that for the majority of popular applications this test should not be used. Previously published results from invalid applications of the Kishino-Hasegawa test should be treated extremely cautiously, and future applications should use appropriate alternative tests instead. We review such alternative tests, both nonparametric and parametric, and give two examples which illustrate the importance of our contentions.


The ISME Journal | 2012

Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges.

Susanne Schmitt; Peter Tsai; James J. Bell; Jane Fromont; Micha Ilan; Niels Lindquist; Thierry Perez; Allen G. Rodrigo; Peter J. Schupp; Jean Vacelet; Nicole S. Webster; Ute Hentschel; Michael W. Taylor

Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the worlds oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.


Trends in Ecology and Evolution | 2003

Measurably evolving populations

Alexei J. Drummond; Oliver G. Pybus; Andrew Rambaut; Roald Forsberg; Allen G. Rodrigo

The availability of nucleotide and amino acid sequences sampled at different points in time has fostered the development of new statistical methods that exploit this temporal dimension. Such sequences enable us to observe evolution in action and to estimate the rate and magnitude of evolutionary processes through time. Populations for which such studies are possible – measurably evolving populations (MEPs) – are characterized by sufficiently long or numerous sampled sequences and a fast mutation rate relative to the available range of sequence sampling times. The impact of sequences sampled through time has been most apparent in the disciplines of RNA viral evolution and ancient DNA, where they enable us to estimate divergence times without paleontological calibrations, and to analyze temporal changes in population size, population structure and substitution rates. Thus, MEPs could increase our understanding of evolutionary processes in diverse organisms, from viruses to vertebrates.


Science | 1996

HIV Quasispecies and Resampling

Shan-Lu Liu; Allen G. Rodrigo; Raj Shankarappa; Gerald H. Learn; Li Hsu; Ori Davidov; Lue Ping Zhao; James I. Mullins

Letters from: [ Shan-Lu Liu, et al . ][1] [ Barton F. Haynes, et al . ][1] Human immunodeficiency virus (HIV) behaves as an evolving quasispecies in infected individuals. When the populations of genetic variants that make up this quasispecies are characterized, it is common practice to obtain


Journal of Virology | 2002

Immune-Mediated Positive Selection Drives Human Immunodeficiency Virus Type 1 Molecular Variation and Predicts Disease Duration

Howard A. Ross; Allen G. Rodrigo

ABSTRACT Using likelihood-based evolutionary methods, we demonstrate that the broad genetic diversity of human immunodeficiency virus type 1 (HIV-1) in an infected individual is a consequence of site-specific positive selection for diversity, a likely consequence of immune recognition. In particular, the extent of positive selection appears to be a good predictor of disease duration. Positively selected sites along HIV-1 partial env sequences are numerous but not distributed uniformly. In a sample of eight patients studied longitudinally, the proportion of sites per sample under positive selection was a statistically significant predictor of disease duration. Among long-term progressors, positive selection persisted at sites over time and appears to be associated with helper T-cell epitopes. In contrast, sites under positive selection shifted from one longitudinal sample to the next in short-term progressors. Our study is consistent with the hypothesis that a broad and persistent immunologic response is associated with a slower rate of disease progression. In contrast, narrow, shifting immune responses characterize short-term progressors.


Journal of Virology | 2005

Human Immunodeficiency Virus Type 1 Subtype B Ancestral Envelope Protein Is Functional and Elicits Neutralizing Antibodies in Rabbits Similar to Those Elicited by a Circulating Subtype B Envelope

Nicole A. Doria-Rose; Gerald H. Learn; Allen G. Rodrigo; David C. Nickle; Fusheng Li; Madhumita Mahalanabis; Michael T. Hensel; Sherry McLaughlin; Paul Edmonson; David C. Montefiori; Susan W. Barnett; Nancy L. Haigwood; James I. Mullins

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is a difficult target for vaccine development, in part because of its ever-expanding genetic diversity and attendant capacity to escape immunologic recognition. Vaccine efficacy might be improved by maximizing immunogen antigenic similarity to viruses likely to be encountered by vaccinees. To this end, we designed a prototype HIV-1 envelope vaccine using a deduced ancestral state for the env gene. The ancestral state reconstruction method was shown to be >95% accurate by computer simulation and 99.8% accurate when estimating the known inoculum used in an experimental infection study in rhesus macaques. Furthermore, the deduced ancestor gene differed from the set of sequences used to derive the ancestor by an average of 12.3%, while these latter sequences were an average of 17.3% different from each other. A full-length ancestral subtype B HIV-1 env gene was constructed and shown to produce a glycoprotein of 160 kDa that bound and fused with cells expressing the HIV-1 coreceptor CCR5. This Env was also functional in a virus pseudotype assay. When either gp160- or gp140-expressing plasmids and recombinant gp120 were used to immunize rabbits in a DNA prime-protein boost regimen, the artificial gene induced immunoglobulin G antibodies capable of weakly neutralizing heterologous primary HIV-1 strains. The results were similar for rabbits immunized in parallel with a natural isolate, HIV-1 SF162. Further design efforts to better present conserved neutralization determinants are warranted.


Microbiology and Molecular Biology Reviews | 2001

Transition between Stochastic Evolution and Deterministic Evolution in the Presence of Selection: General Theory and Application to Virology

Igor M. Rouzine; Allen G. Rodrigo; John M. Coffin

SUMMARY We present here a self-contained analytic review of the role of stochastic factors acting on a virus population. We develop a simple one-locus, two-allele model of a haploid population of constant size including the factors of random drift, purifying selection, and random mutation. We consider different virological experiments: accumulation and reversion of deleterious mutations, competition between mutant and wild-type viruses, gene fixation, mutation frequencies at the steady state, divergence of two populations split from one population, and genetic turnover within a single population. In the first part of the review, we present all principal results in qualitative terms and illustrate them with examples obtained by computer simulation. In the second part, we derive the results formally from a diffusion equation of the Wright-Fisher type and boundary conditions, all derived from the first principles for the virus population model. We show that the leading factors and observable behavior of evolution differ significantly in three broad intervals of population size, N. The “neutral limit” is reached when N is smaller than the inverse selection coefficient. When N is larger than the inverse mutation rate per base, selection dominates and evolution is “almost” deterministic. If the selection coefficient is much larger than the mutation rate, there exists a broad interval of population sizes, in which weakly diverse populations are almost neutral while highly diverse populations are controlled by selection pressure. We discuss in detail the application of our results to human immunodeficiency virus population in vivo, sampling effects, and limitations of the model.


New Zealand Journal of Botany | 1993

A randomisation test of the null hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree

Allen G. Rodrigo; Michelle Kelly-Borges; Patricia R. Bergquist; Peter L. Bergquist

Abstract Cladograms for the same group of taxa derived using different datasets often agree extensively but are seldom identical. This disagreement may be due to the fact that cladograms are sampling estimates of the true phylogeny and as a result may differ only because of sampling error. A protocol is proposed to test the null hypothesis that two trees estimate the true or parametric phylogeny and are no more different than would be expected due to sampling error. In the event that the null hypothesis is rejected, the datasets are pruned to remove potentially confounding information, and the test of the null hypothesis is repeated. If the null hypothesis cannot be rejected, a method for combining the cladistic information from both datasets is proposed that takes account of the variability of the cladistic structure. The procedure is illustrated using morphological and molecular data from genera of the sponge Order Hadromerida (Porifera: Demospongiae).


Journal of Virology | 2000

Testing the Hypothesis of a Recombinant Origin of Human Immunodeficiency Virus Type 1 Subtype E

Jon P. Anderson; Allen G. Rodrigo; Gerald H. Learn; Anup Madan; Claire Delahunty; Michael Coon; Marc Girard; Saladin Osmanov; Leroy Hood; James I. Mullins

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) epidemic in Southeast Asia has been largely due to the emergence of clade E (HIV-1E). It has been suggested that HIV-1E is derived from a recombinant lineage of subtype A (HIV-1A) and subtype E, with multiple breakpoints along the E genome. We obtained complete genome sequences of clade E viruses from Thailand (93TH057 and 93TH065) and from the Central African Republic (90CF11697 and 90CF4071), increasing the total number of HIV-1E complete genome sequences available to seven. Phylogenetic analysis of complete genomes showed that subtypes A and E are themselves monophyletic, although together they also form a larger monophyletic group. The apparent phylogenetic incongruence at different regions of the genome that was previously taken as evidence of recombination is shown to be not statistically significant. Furthermore, simulations indicate that bootscanning and pairwise distance results, previously used as evidence for recombination, can be misleading, particularly when there are differences in substitution or evolutionary rates across the genomes of different subtypes. Taken jointly, our analyses suggest that there is inadequate support for the hypothesis that subtype E variants are derived from a recombinant lineage. In contrast, many other HIV strains claimed to have a recombinant origin, including viruses for which only a single parental strain was employed for analysis, do indeed satisfy the statistical criteria we propose. Thus, while intersubtype recombinant HIV strains are indeed circulating, the criteria for assigning a recombinant origin to viral structures should include statistical testing of alternative hypotheses to avoid inappropriate assignments that would obscure the true evolutionary properties of these viruses.


PLOS Genetics | 2012

Ultrafast Evolution and Loss of CRISPRs Following a Host Shift in a Novel Wildlife Pathogen, Mycoplasma gallisepticum

Nigel F. Delaney; Susan L. Balenger; Camille Bonneaud; Christopher J. Marx; Geoffrey E. Hill; Naola Ferguson-Noel; Peter Tsai; Allen G. Rodrigo; Scott V. Edwards

Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG) is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus), a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only ∼2% of ancestral poultry strains and a nucleotide substitution rate of 0.8−1.2×10−5 per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007) House Finch MG strains retain only ∼50% of the CRISPR repertoire founding (1994–95) strains and have lost the CRISPR–associated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs.

Collaboration


Dive into the Allen G. Rodrigo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald H. Learn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Poss

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Tsai

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge