Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allen H. Hurlbert is active.

Publication


Featured researches published by Allen H. Hurlbert.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Species richness, hotspots, and the scale dependence of range maps in ecology and conservation.

Allen H. Hurlbert; Walter Jetz

Most studies examining continental-to-global patterns of species richness rely on the overlaying of extent-of-occurrence range maps. Because a species does not occur at all locations within its geographic range, range-map-derived data represent actual distributional patterns only at some relatively coarse and undefined resolution. With the increasing availability of high-resolution climate and land-cover data, broad-scale studies are increasingly likely to estimate richness at high resolutions. Because of the scale dependence of most ecological phenomena, a significant mismatch between the presumed and actual scale of ecological data may arise. This may affect conclusions regarding basic drivers of diversity and may lead to errors in the identification of diversity hotspots. Here, we examine avian range maps of 834 bird species in conjunction with geographically extensive survey data sets on two continents to determine the spatial resolutions at which range-map data actually characterize species occurrences and patterns of species richness. At resolutions less than 2° (≈200 km), range maps overestimate the area of occupancy of individual species and mischaracterize spatial patterns of species richness, resulting in up to two-thirds of biodiversity hotspots being misidentified. The scale dependence of range-map accuracy poses clear limitations on broad-scale ecological analyses and conservation assessments. We suggest that range-map data contain less information than is generally assumed and provide guidance about the appropriate scale of their use.


The American Naturalist | 2003

The Effect of Energy and Seasonality on Avian Species Richness and Community Composition

Allen H. Hurlbert; John P. Haskell

We analyzed geographic patterns of richness in both the breeding and winter season in relation to a remotely sensed index of seasonal production (normalized difference vegetation index [NDVI]) and to measures of habitat heterogeneity at four different spatial resolutions. The relationship between avian richness and NDVI was consistent between seasons, suggesting that the way in which available energy is converted to bird species is similar at these ecologically distinct times of year. The number and proportion of migrant species in breeding communities also increased predictably with the degree of seasonality. The NDVI was a much better predictor of seasonal richness at finer spatial scales, whereas habitat heterogeneity best predicted richness at coarser spatial resolutions. While we find strong support for a positive relationship between available energy and species richness, seasonal NDVI explained at most 61% of the variation in richness. Seasonal NDVI and habitat heterogeneity together explain up to 69% of the variation in richness.


PLOS ONE | 2012

Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change.

Allen H. Hurlbert; Zhongfei Liang

A growing number of studies have documented shifts in avian migratory phenology in response to climate change, and yet there is a large amount of unexplained variation in the magnitude of those responses across species and geographic regions. We use a database of citizen science bird observations to explore spatiotemporal variation in mean arrival dates across an unprecedented geographic extent for 18 common species in North America over the past decade, relating arrival dates to mean minimum spring temperature. Across all species and geographic locations, species shifted arrival dates 0.8 days earlier for every °C of warming of spring temperature, but it was common for some species in some locations to shift as much as 3-6 days earlier per °C. Species that advanced arrival dates the earliest in response to warming were those that migrate more slowly, short distance migrants, and species with broader climatic niches. These three variables explained 63% of the interspecific variation in phenological response. We also identify a latitudinal gradient in the average strength of phenological response, with species shifting arrival earlier at southern latitudes than northern latitudes for the same degree of warming. This observation is consistent with the idea that species must be more phenologically sensitive in less seasonal environments to maintain the same degree of precision in phenological timing.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Bird communities in future bioenergy landscapes of the Upper Midwest.

Timothy D. Meehan; Allen H. Hurlbert; Claudio Gratton

Mandates for biofuel and renewable electricity are creating incentives for biomass production in agricultural landscapes of the Upper Midwest. Different bioenergy crops are expected to vary in their effects on biodiversity and ecosystem services. Here, we use data from the North American Breeding Bird Survey to forecast the impact of potential bioenergy crops on avian species richness and the number of bird species of conservation concern in Midwestern landscapes. Our analysis suggests that expanded production of annual bioenergy crops (e.g., corn and soybeans) on marginal land will lead to declines in avian richness between 7% and 65% across 20% of the region, and will make managing at-risk species more challenging. In contrast, replacement of annual with diverse perennial bioenergy crops (e.g., mixed grasses and forbs) is expected to bring increases in avian richness between 12% and 207% across 20% of the region, and possibly aid the recovery of several species of conservation concern.


The American Naturalist | 2015

Species Richness at Continental Scales Is Dominated by Ecological Limits

Daniel L. Rabosky; Allen H. Hurlbert

Explaining variation in species richness among provinces and other large geographic regions remains one of the most challenging problems at the intersection of ecology and evolution. Here we argue that empirical evidence supports a model whereby ecological factors associated with resource availability regulate species richness at continental scales. Any large-scale predictive model for biological diversity must explain three robust patterns in the natural world. First, species richness for evolutionary biotas is highly correlated with resource-associated surrogate variables, including area, temperature, and productivity. Second, species richness across epochal timescales is largely stationary in time. Third, the dynamics of diversity exhibit clear and predictable responses to mass extinctions, key innovations, and other perturbations. Collectively, these patterns are readily explained by a model in which species richness is regulated by diversity-dependent feedback mechanisms. We argue that many purported tests of the ecological limits hypothesis, including branching patterns in molecular phylogenies, are inherently weak and distract from these three core patterns. We have much to learn about the complex hierarchy of processes by which local ecological interactions lead to diversity dependence at the continental scale, but the empirical evidence overwhelmingly suggests that they do.


Ecology | 2012

Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity

Nathan G. Swenson; James C. Stegen; Stuart J. Davies; David L. Erickson; Jimena Forero-Montaña; Allen H. Hurlbert; W. John Kress; Jill Thompson; María Uriarte; S. Joseph Wright; Jess K. Zimmerman

The degree to which turnover in biological communities is structured by deterministic or stochastic factors and the identities of influential deterministic factors are fundamental, yet unresolved, questions in ecology. Answers to these questions are particularly important for projecting the fate of forests with diverse disturbance histories worldwide. To uncover the processes governing turnover we use species-level molecular phylogenies and functional trait data sets for two long-term tropical forest plots with contrasting disturbance histories: one forest is older-growth, and one was recently disturbed. Having both phylogenetic and functional information further allows us to parse out the deterministic influences of different ecological filters. With the use of null models we find that compositional turnover was random with respect to phylogeny on average, but highly nonrandom with respect to measured functional traits. Furthermore, as predicted by a deterministic assembly process, the older-growth and disturbed forests were characterized by less than and greater than expected functional turnover, respectively. These results suggest that the abiotic environment, which changes due to succession in the disturbed forest, strongly governs the temporal dynamics of disturbed and undisturbed tropical forests. Predicting future changes in the composition of disturbed and undisturbed forests may therefore be tractable when using a functional-trait-based approach.


Ecological Entomology | 2008

Shaking a leg and hot to trot: The effects of body size and temperature on running speed in ants

Allen H. Hurlbert; Ford Ballantyne; Scott Powell

Abstract 1. Data were compiled from the literature and our own studies on 24 ant species to characterise the effects of body size and temperature on forager running speed.


Philosophical Transactions of the Royal Society B | 2010

Integrating spatial and temporal approaches to understanding species richness

Ethan P. White; S. K. Morgan Ernest; Peter B. Adler; Allen H. Hurlbert; S. Kathleen Lyons

Understanding species richness patterns represents one of the most fundamental problems in ecology. Most research in this area has focused on spatial gradients of species richness, with a smaller area of emphasis dedicated to understanding the temporal dynamics of richness. However, few attempts have been made to understand the linkages between the spatial and temporal patterns related to richness. Here, we argue that spatial and temporal richness patterns and the processes that drive them are inherently linked, and that our understanding of richness will be substantially improved by considering them simultaneously. The species–time–area relationship provides a case in point: successful description of the empirical spatio-temporal pattern led to a rapid development and testing of new theories. Other areas of research on species richness could also benefit from an explicitly spatio-temporal approach, and we suggest future directions for understanding the processes common to these two traditionally isolated fields of research.


The American Naturalist | 2010

More than "more individuals": The nonequivalence of area and energy in the scaling of species richness

Allen H. Hurlbert; Walter Jetz

One of the primary ecological hypotheses put forward to explain patterns of biodiversity is known as the more‐individuals hypothesis of species‐energy theory. This hypothesis suggests that the number of species increases along the global energy gradient primarily as a result of an increase in the total number of individuals that can be supported along that gradient. Implicit in this hypothesis is that species richness should scale with energy in the same way in which it scales with area in species‐area relationships. We developed a novel framework for thinking about the interaction of area and energy, and we provide the first global test of this equivalence assumption using a data set on terrestrial breeding birds. We found that (1) species‐energy slopes are typically greater than species‐area slopes, (2) the magnitude of species‐area and species‐energy slopes varies strongly across the globe, and (3) the degree to which area and energy interact to determine species richness depends on the way mean values of species occupancy change along the energy gradient. Our results indicate that the increase in richness along global productivity gradients cannot be explained by more individuals alone, and we discuss other mechanisms by which increased productivity might facilitate species coexistence.


Ecology Letters | 2009

Taking species abundance distributions beyond individuals

Hélène Morlon; Ethan P. White; Rampal S. Etienne; Jessica L. Green; Annette Ostling; David Alonso; Brian J. Enquist; Fangliang He; Allen H. Hurlbert; Anne E. Magurran; Brian A. Maurer; Brian J. McGill; Han Olff; David Storch; Tommaso Zillio

The species abundance distribution (SAD) is one of the few universal patterns in ecology. Research on this fundamental distribution has primarily focused on the study of numerical counts, irrespective of the traits of individuals. Here we show that considering a set of Generalized Species Abundance Distributions (GSADs) encompassing several abundance measures, such as numerical abundance, biomass and resource use, can provide novel insights into the structure of ecological communities and the forces that organize them. We use a taxonomically diverse combination of macroecological data sets to investigate the similarities and differences between GSADs. We then use probability theory to explore, under parsimonious assumptions, theoretical linkages among them. Our study suggests that examining different GSADs simultaneously in natural systems may help with assessing determinants of community structure. Broadening SADs to encompass multiple abundance measures opens novel perspectives in biodiversity research and warrants future empirical and theoretical developments.

Collaboration


Dive into the Allen H. Hurlbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James C. Stegen

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian S. Evans

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica R. Coyle

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge