Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allen J. Moore is active.

Publication


Featured researches published by Allen J. Moore.


Trends in Ecology and Evolution | 1998

Evolutionary consequences of indirect genetic effects

Jason B. Wolf; Edmund D. Brodie; James M. Cheverud; Allen J. Moore; Michael J. Wade

Indirect genetic effects (IGEs) are environmental influences on the phenotype of one individual that are due to the expression of genes in a different, conspecific, individual. Historically, work has focused on the influence of parents on offspring but recent advances have extended this perspective to interactions among other relatives and even unrelated individuals. IGEs lead to complicated pathways of inheritance, where environmental sources of variation can be transmitted across generations and therefore contribute to evolutionary change. The existence of IGEs alters the genotype-phenotype relationship, changing the evolutionary process in some dramatic and non-intuitive ways.


Trends in Ecology and Evolution | 1995

Visualizing and quantifying natural selection

Edmund D. Brodie; Allen J. Moore; Fredric J. Janzen

Modern methods of analysis are enabling researchers to study natural selection at a new level of detail. Multivariate statistical techniques can Identify specific targets of selection and provide parameter estimates that fit into equations for evolutionary change. A more Intuitive understanding of the form of selection can be provided through graphical representation of selection surfaces. Combinations of quantitative and visual analyses are providing researchers with new insights into the details of natural selection in the wild.


Evolution | 1997

INTERACTING PHENOTYPES AND THE EVOLUTIONARY PROCESS: I. DIRECT AND INDIRECT GENETIC EFFECTS OF SOCIAL INTERACTIONS

Allen J. Moore; Edmund D. Brodie; Jason B. Wolf

Interacting phenotypes are traits whose expression is affected by interactions with conspecifics. Commonly‐studied interacting phenotypes include aggression, courtship, and communication. More extreme examples of interacting phenotypes—traits that exist exclusively as a product of interactions—include social dominance, intraspecific competitive ability, and mating systems. We adopt a quantitative genetic approach to assess genetic influences on interacting phenotypes. We partition genetic and environmental effects so that traits in conspecifics that influence the expression of interacting phenotypes are a component of the environment. When the trait having the effect is heritable, the environmental influence arising from the interaction has a genetic basis and can be incorporated as an indirect genetic effect. However, because it has a genetic basis, this environmental component can evolve. Therefore, to consider the evolution of interacting phenotypes we simultaneously consider changes in the direct genetic contributions to a trait (as a standard quantitative genetic approach would evaluate) as well as changes in the environmental (indirect genetic) contribution to the phenotype. We then explore the ramifications of this model of inheritance on the evolution of interacting phenotypes. The relative rate of evolution in interacting phenotypes can be quite different from that predicted by a standard quantitative genetic analysis. Phenotypic evolution is greatly enhanced or inhibited depending on the nature of the direct and indirect genetic effects. Further, unlike most models of phenotypic evolution, a lack of variation in direct genetic effects does not preclude evolution if there is genetic variance in the indirect genetic contributions. The available empirical evidence regarding the evolution of behavior expressed in interactions, although limited, supports the predictions of our model.


Journal of Evolutionary Biology | 2009

Male-male competition, female mate choice and their interaction: determining total sexual selection.

John Hunt; Casper J. Breuker; Jennifer A. Sadowski; Allen J. Moore

Empirical studies of sexual selection typically focus on one of the two mechanisms of sexual selection without integrating these into a description of total sexual selection, or study total sexual selection without quantifying the contributions of all of the mechanisms of sexual selection. However, this can provide an incomplete or misleading view of how sexually selected traits evolve if the mechanisms of sexual selection are opposing or differ in form. Here, we take a two‐fold approach to advocate a direction for future studies of sexual selection. We first show how a quantitative partitioning and examination of sexual selection mechanisms can inform by identifying illustrative studies that describe both male–male competition and female mate choice acting on the same trait. In our sample, the most common trait where this occurred was body size, and selection was typically linear. We found that male–male competition and female mate choice can be reinforcing or opposing, although the former is most common in the literature. The mechanisms of sexual selection can occur simultaneously or sequentially, and we found they were more likely to be opposing when the mechanisms operated sequentially. The degree and timing that these mechanisms interact have important implications for the operation of sexual selection and needs to be considered in designing studies. Our examples highlight where empirical data are needed. We especially lack standardized measures of the form and strength of selection imposed by each mechanism of sexual selection and how they combine to determine total sexual selection. Secondly, using quantitative genetic principles, we outline how the selection imposed by individual mechanisms can be measured and combined to estimate the total strength and form of sexual selection. We discuss the evolutionary consequences of combining the mechanisms of sexual selection and interpreting total sexual selection. We suggest how this approach may result in empirical progress in the field of sexual selection.


The American Naturalist | 1999

INTERACTING PHENOTYPES AND THE EVOLUTIONARY PROCESS. II. SELECTION RESULTING FROM SOCIAL INTERACTIONS

Jason B. Wolf; Edmund D. Brodie; Allen J. Moore

Social interactions often affect the fitness of interactants. Because of this, social selection has been described as a process distinct from other forms of natural selection. Social selection has been predicted to result in different evolutionary dynamics for interacting phenotypes, including rapid or extreme evolution and evolution of altruism. Despite the critical role that social selection plays in theories of social evolution, few studies have measured the force of social selection or the conditions under which this force changes. Here we present a model of social selection acting on interacting phenotypes that can be evaluated independently from the genetics of interacting phenotypes. Our model of social selection is analogous to covariance models of other forms of selection. We observe that an opportunity for social selection exists whenever individual fitness varies as a result of interactions with conspecifics. Social selection occurs, therefore, when variation in fitness due to interactions covaries with traits, resulting in a net force of selection acting on the interacting phenotypes. Thus, there must be a covariance between the phenotypes of the interactants for social selection to exist. This interacting phenotype covariance is important because it measures the degree to which a particular trait covaries with the selective environment provided by conspecifics. A variety of factors, including nonrandom interactions, behavioral modification during interactions, relatedness, and indirect genetic effects may contribute to the covariance of interacting phenotypes, which promotes social selection. The independent force of social selection (measured as a social selection gradient) can be partitioned empirically from the force of natural selection (measured by the natural selection gradient) using partial regression. This measure can be combined with genetic models of interacting phenotypes to provide insights into social evolution.


Proceedings of the Royal Society of London B: Biological Sciences | 1999

Balancing sexual selection through opposing mate choice and male competition

Allen J. Moore; Patricia J. Moore

Male–male competition and female mate choice act contemporaneously in the cockroach Nauphoeta cinerea and the social pheromone of males influences the outcome of both forms of sexual selection. We therefore examined the joint and separate effects of male–male competition and female mate choice to determine if the selective optima for the pheromone were the same or different. Dominant males in a newly established hierarchy mated more frequently, but not exclusively. Manipulations of the multi–component social pheromone produced by males of N. cinerea showed that both long– and close–range attraction of females by males were influenced by the quantity and composition of the pheromone. The most attractive composition, however, differed from that which was most likely to confer high status to males. Since the outcome of male–male competition can conflict with mating preferences exhibited by females, there is balancing sexual selection on the social pheromone of N. cinerea. Such balancing selection might act to maintain genetic variation in sexually selected traits. We suggest that the different forms of sexual selection conflict in N. cinerea because females prefer a blend different to that which is most effective in male–male competition in order to avoid mating with overly aggressive males.


Evolution | 2010

INTERACTING PHENOTYPES AND THE EVOLUTIONARY PROCESS. III. SOCIAL EVOLUTION

Joel W. McGlothlin; Allen J. Moore; Jason B. Wolf; Edmund D. Brodie

Interactions among conspecifics influence social evolution through two distinct but intimately related paths. First, they provide the opportunity for indirect genetic effects (IGEs), where genes expressed in one individual influence the expression of traits in others. Second, interactions can generate social selection when traits expressed in one individual influence the fitness of others. Here, we present a quantitative genetic model of multivariate trait evolution that integrates the effects of both IGEs and social selection, which have previously been modeled independently. We show that social selection affects evolutionary change whenever the breeding value of one individual covaries with the phenotype of its social partners. This covariance can be created by both relatedness and IGEs, which are shown to have parallel roles in determining evolutionary response. We show that social selection is central to the estimation of inclusive fitness and derive a version of Hamiltons rule showing the symmetrical effects of relatedness and IGEs on the evolution of altruism. We illustrate the utility of our approach using altruism, greenbeards, aggression, and weapons as examples. Our model provides a general predictive equation for the evolution of social phenotypes that encompasses specific cases such as kin selection and reciprocity. The parameters can be measured empirically, and we emphasize the importance of considering both IGEs and social selection, in addition to relatedness, when testing hypotheses about social evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Reproductive aging and mating: The ticking of the biological clock in female cockroaches

Patricia J. Moore; Allen J. Moore

Females are expected to have different mating preferences because of the variation in costs and benefits of mate choice both between females and within individual females over a lifetime. Workers have begun to look for, and find, the expected variation among females in expressed mating preferences. However, variation within females caused by changes in intrinsic influences has not been examined in detail. Here we show that reproductive aging caused by delayed mating resulted in reduced choosiness by female Nauphoeta cinerea, a cockroach that has reproductive cycles and gives live birth. Male willingness to mate was unaffected by variation in female age. Females who were beyond the optimal mating age, 6 days postadult molt, required considerably less courtship than their younger counterparts. Females who were older when they mated had fewer offspring per clutch and fewer clutches than females who mated young. Thus, reduced choosiness was correlated with a permanent reduction in fertility. There was no difference in overall senescence among females, and thus the reduction in clutch size did not result in the expected increased lifespan. We suggest that reproductive aging in N. cinerea, similar to aging in general, occurs because the maintenance of oocytes is costly, and selection is relaxed after the optimal mating period. Our results further suggest that selection for continued choosiness is also relaxed and supports direct selection on female choosiness and a cost to choosiness.


Evolution | 1990

The evolution of sexual dimorphism by sexual selection: the separate effects of intrasexual selection and intersexual selection

Allen J. Moore

Libellula luctuosa, a pond dragonfly found in eastern North America, is apparently sexually dimorphic. Previous studies of the mating behavior in this species suggested that both male‐male competition and female mate choice are important influences. Males compete for territories, where they attract females and where mating occurs. Female behavior influences both the copulation success and the fertilization success of males. Because of temporal and spatial separation of these episodes of sexual selection, multivariate and nonparametric statistical techniques could be used to investigate the influence of components of sexual selection on various sexually dimorphic traits. Sexual dimorphism in L. luctuosa was first quantified; then the direct effects and the form of selection were estimated. Sexually dimorphic wing size, body size, wing coloration, and body coloration are distributed either continuously or discontinuously between the sexes in L. luctuosa. These traits have apparently diverged between the sexes as a result of directional sexual selection. Body size is further influenced by stabilizing selection. Intrasexual selection (success in gaining access to a territory) and intersexual selection (success in copulation and fertilization) can influence the same or different sexually dimorphic characters. Body size is influenced by directional selection during the intrasexual phase of sexual selection and is also influenced by stabilizing selection during intersexual selection. The size of the brown wing patch is influenced by directional selection, primarily during the intersexual phase of sexual selection. There is directional selection on the white wing patch during both phases. Thus, the different proximate mechanisms of sexual selection may jointly or separately affect the evolution of sexually dimorphic characters. Further empirical and theoretical investigations into the differences in the effects of intrasexual selection and intersexual selection are needed to clarify the circumstances leading to separate consequences of these two mechanisms of sexual selection.


Proceedings of the Royal Society of London B: Biological Sciences | 2003

Partial begging: an empirical model for the early evolution of offspring signalling

Per T. Smiseth; Clive T. Darwell; Allen J. Moore

Species where, from birth, the offspring feed themselves in addition to begging for food from the parents can be described as ‘partially begging’. Such species provide a unique opportunity to examine the evolution of offspring begging from nonndash;signalling offspring foraging strategies. We used the partially begging burying beetle Nicrophorus vespilloides to test specific hypotheses concerning the coexistence of begging and selfndash;feeding. We first tested whether the cessation of larval begging coincided with an increase in the efficiency of selfndash;feeding. As predicted, begging ceased when the efficiency of selfndash;feeding reached the point where the larvae grew just as well without as with access to food provided by the parent. We next tested whether the transition to nutritional independence was under parental or offspring control. The parent did not change its behaviour towards the larvae over time, while the larvae changed their behaviour by reducing the time spent begging in the presence of the parent. Food allocation during the transition to nutritional independence was therefore under offspring control. Our results on partial begging provide a starting point for new theoretical models for the origin of begging. We suggest that these should be constructed as scramblendash;competition models because the offspring control food allocation.

Collaboration


Dive into the Allen J. Moore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Komdeur

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge