Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allen M. Orville is active.

Publication


Featured researches published by Allen M. Orville.


Nature | 2016

Structure of photosystem II and substrate binding at room temperature.

Iris D. Young; Mohamed Ibrahim; Ruchira Chatterjee; Sheraz Gul; Franklin Fuller; Sergey Koroidov; Aaron S. Brewster; Rosalie Tran; Roberto Alonso-Mori; Thomas Kroll; Tara Michels-Clark; Hartawan Laksmono; Raymond G. Sierra; Claudiu A. Stan; Rana Hussein; Miao Zhang; Lacey Douthit; Markus Kubin; Casper de Lichtenberg; Long Vo Pham; Håkan Nilsson; Mun Hon Cheah; Dmitriy Shevela; Claudio Saracini; Mackenzie A. Bean; Ina Seuffert; Dimosthenis Sokaras; Tsu-Chien Weng; Ernest Pastor; Clemens Weninger

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O–O bond formation and O2 evolution. A detailed understanding of the O–O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O–O bond formation mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Differential Quantum Tunneling Contributions in Nitroalkane Oxidase Catalyzed and the Uncatalyzed Proton Transfer Reaction

Dan Thomas Major; Annie Heroux; Allen M. Orville; Michael P. Valley; Paul F. Fitzpatrick; Jiali Gao

The proton transfer reaction between the substrate nitroethane and Asp-402 catalyzed by nitroalkane oxidase and the uncatalyzed process in water have been investigated using a path-integral free-energy perturbation method. Although the dominating effect in rate acceleration by the enzyme is the lowering of the quasiclassical free energy barrier, nuclear quantum effects also contribute to catalysis in nitroalkane oxidase. In particular, the overall nuclear quantum effects have greater contributions to lowering the classical barrier in the enzyme, and there is a larger difference in quantum effects between proton and deuteron transfer for the enzymatic reaction than that in water. Both experiment and computation show that primary KIEs are enhanced in the enzyme, and the computed Swain-Schaad exponent for the enzymatic reaction is exacerbated relative to that in the absence of the enzyme. In addition, the computed tunneling transmission coefficient is approximately three times greater for the enzyme reaction than the uncatalyzed reaction, and the origin of the difference may be attributed to a narrowing effect in the effective potentials for tunneling in the enzyme than that in aqueous solution.


Biochemistry | 2010

Synchrotron X-ray-Induced Photoreduction of Ferric Myoglobin Nitrite Crystals Gives the Ferrous Derivative with Retention of the O-Bonded Nitrite Ligand.

Jun Yi; Allen M. Orville; John M. Skinner; Michael J. Skinner; George B. Richter-Addo

Exposure of a single crystal of the nitrite adduct of ferric myoglobin (Mb) at 100 K to high-intensity synchrotron X-ray radiation resulted in changes in the UV-vis spectrum that can be attributed to reduction of the ferric compound to the ferrous derivative. We employed correlated single-crystal spectroscopy with crystallography to further characterize this photoproduct. The 1.55 A resolution crystal structure of the photoproduct reveals retention of the O-binding mode for binding of nitrite to the iron center. The data are consistent with cryogenic generation and trapping, at 100 K, of a ferrous d(6) Mb(II)(ONO)* complex by photoreduction of the ferric precursor crystals using high-intensity X-ray radiation.


Biochemistry | 2009

Crystallographic, spectroscopic, and computational analysis of a flavin C4a-oxygen adduct in choline oxidase.

Allen M. Orville; George T. Lountos; Steffan Finnegan; Giovanni Gadda; Rajeev Prabhakar

Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 A resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. We propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.


Biochemistry | 2011

Acoustically Mounted Microcrystals Yield High Resolution X-ray Structures

Alexei S. Soares; Matthew A. Engel; Richard Stearns; Sammy Datwani; Joe Olechno; Richard N. Ellson; John M. Skinner; Marc Allaire; Allen M. Orville

We demonstrate a general strategy for determining structures from showers of microcrystals. It uses acoustic droplet ejection to transfer 2.5 nL droplets from the surface of microcrystal slurries, through the air, onto mounting micromesh pins. Individual microcrystals are located by raster-scanning a several-micrometer X-ray beam across the cryocooled micromeshes. X-ray diffraction data sets merged from several micrometer-sized crystals are used to determine 1.8 Ǻ resolution crystal structures.


Structure | 2016

Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography

Christian G. Roessler; Rakhi Agarwal; Marc Allaire; Roberto Alonso-Mori; Babak Andi; José Fernando Ruguiero Bachega; Martin Bommer; Aaron S. Brewster; Michael C. Browne; Ruchira Chatterjee; Eunsun Cho; Aina E. Cohen; Matthew L. Cowan; Sammy Datwani; Victor L. Davidson; Jim Defever; Brent Eaton; Richard N. Ellson; Yiping Feng; Lucien P. Ghislain; James M. Glownia; Guangye Han; Johan Hattne; Julia Hellmich; Annie Heroux; Mohamed Ibrahim; Jan Kern; A. Kuczewski; Henrik T. Lemke; Pinghua Liu

X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples.


Journal of the American Chemical Society | 2012

Quaternary Ammonium Oxidative Demethylation: X-ray Crystallographic, Resonance Raman, and UV-Visible Spectroscopic Analysis of a Rieske-Type Demethylase.

Kelly D. Daughtry; Youli Xiao; Deborah Stoner-Ma; Eunsun Cho; Allen M. Orville; Pinghua Liu; Karen N. Allen

Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.


Acta Crystallographica Section D-biological Crystallography | 2014

Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes

Xingyu Yin; Alexander Scalia; Ludmila Leroy; Christina M. Cuttitta; Gina M. Polizzo; Daniel L. Ericson; Christian G. Roessler; Olven Campos; Millie Y. Ma; Rakhi Agarwal; Rick Jackimowicz; Marc Allaire; Allen M. Orville; Robert M. Sweet; Alexei S. Soares

A method is presented for screening fragment libraries using acoustic droplet ejection to co-crystallize proteins and chemicals directly on micromeshes with as little as 2.5 nl of each component. This method was used to identify previously unreported fragments that bind to lysozyme, thermolysin, and trypsin.


Journal of Synchrotron Radiation | 2011

Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

Allen M. Orville; Richard Buono; Matt Cowan; Annie Heroux; Grace Shea-McCarthy; Dieter K. Schneider; John M. Skinner; Michael J. Skinner; Deborah Stoner-Ma; Robert M. Sweet

The instrumentation and methods available for collecting almost simultaneous single-crystal electronic absorption correlated with X-ray diffraction data at NSLS beamline X26-C are reviewed, as well as a very brief outline of its Raman spectroscopy capability.


Nature Methods | 2017

Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers

Franklin Fuller; Sheraz Gul; Ruchira Chatterjee; E. Sethe Burgie; Iris D. Young; Hugo Lebrette; Vivek Srinivas; Aaron S. Brewster; Tara Michels-Clark; Jonathan Clinger; Babak Andi; Mohamed Ibrahim; Ernest Pastor; Casper de Lichtenberg; Rana Hussein; Christopher J. Pollock; Miao Zhang; Claudiu A Stan; Thomas Kroll; Thomas Fransson; Clemens Weninger; Markus Kubin; Pierre Aller; Louise Lassalle; Philipp Bräuer; Mitchell D. Miller; Muhamed Amin; Sergey Koroidov; Christian G. Roessler; Marc Allaire

X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.

Collaboration


Dive into the Allen M. Orville's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Allaire

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alexei S. Soares

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Annie Heroux

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert M. Sweet

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christian G. Roessler

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dieter K. Schneider

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian G. Fox

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Skinner

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge