Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alline C. Campos is active.

Publication


Featured researches published by Alline C. Campos.


Psychopharmacology | 2008

Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats

Alline C. Campos; Francisco S. Guimarães

RationaleCannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa plant that induces anxiolytic effects. However, the brain sites and mechanisms of these effects remain poorly understood. The dorsolateral periaqueductal gray (dlPAG) is a midbrain structure related to anxiety that contains receptors proposed to interact with CBD such as 5HT1A. In addition, since CBD has been shown to inhibit anandamide metabolism, CB1 receptors could also be involved in the effects of this cannabinoid.ObjectivesTo investigate if the dlPAG could be a possible site of the anxiolytic effects induced by CBD and if these effects depend on CB1 or 5HT1A receptors.Materials and methodsMale Wistar rats with cannulae aimed at the dlPAG were tested in the elevated plus maze (EPM) and the Vogel conflict test (VCT).ResultsCBD injected into the dlPAG produced anxiolytic-like effects in the EPM with a bell-shaped dose–response curve. The anxiolytic effect of CBD was confirmed in the VCT. These effects were prevented by WAY100635, a 5HT1A receptor antagonist, but not by AM251, an antagonist of CB1 receptors.ConclusionThese results suggest the CBD interacts with 5HT1A receptors to produce anxiolytic effects in the dlPAG.


Philosophical Transactions of the Royal Society B | 2012

Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders

Alline C. Campos; Fabrício A. Moreira; Felipe V. Gomes; Elaine Aparecida Del Bel; Francisco S. Guimarães

Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ9-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca2+) increase, etc.), on CBD behavioural effects.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2009

Evidence for a potential role for TRPV1 receptors in the dorsolateral periaqueductal gray in the attenuation of the anxiolytic effects of cannabinoids

Alline C. Campos; Francisco S. Guimarães

Several studies have shown anxiolytic effects of cannabinoids after systemic or central injections. The periaqueductal gray matter is a midbrain structure involved in the control of anxiety states. Intra-cerebral administration of cannabidiol, a phytocannabinoid, or anandamide, an endocannabinoid, into the dorsolateral portion of periaqueductal gray (dlPAG) promotes anxiolytic-like effects in several animal models of anxiety with bell-shaped dose-response curves. The reasons for these curves are still unclear, but since these drugs can also activate TRPV1 receptors and increase glutamate release, we hypothesized that, at high doses, cannabidiol and WIN 55,212-2, a CB1 receptor agonist, could activate TRPV1 receptors, facilitating glutamate neurotransmission and anxiety responses. To test this hypothesis male Wistar rats with cannulae aimed toward the dlPAG were submitted to the following intra-dlPAG treatments: Experiment 1. Vehicle (0.2 microL) or WIN 55,212-2 (3-30 pmol); Experiment 2. Capsazepine (CPZ, 10 nmol, a TRPV1 receptor antagonist) or vehicle followed, 5 min later, by vehicle or WIN 55, 212-2 (10 or 30 pmol); Experiment 3. CPZ (10 nmol) or vehicle followed, 5 min later, by cannabidiol (30 or 60 nmol). Ten minutes after the last injection the animals were tested in the elevated plus maze (EPM). WIN 55,212-2 and cannabidiol induced anxiolytic effects at lower doses that disappeared at the higher dose. Although CPZ+WIN 10 or CPZ+WIN 30 pmol groups were not different from control (CPZ+V), capsazepine prevented the decrease in open arm exploration caused by the higher of dose of WIN 55,212-2 (30 nmol) relative to the lower dose of WIN 55,212-2 (10 nmol) and, in the case of cannabidiol (60 nmol), increased open arm exploration (V+CBD 60 group versus CPZ+CBD 60 group). These results suggest that TRPV1 receptors in the dlPAG modulate anxiety and that activation of these receptors by high doses of cannabinoids could be involved in the bell-shaped dose-response curves observed with these compounds.


International Immunopharmacology | 2009

Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats.

Marcelo Henrique Napimoga; Bruno Braga Benatti; Flavia O. Lima; Polyanna Miranda Alves; Alline C. Campos; Diego R. Pena-dos-Santos; Fernando P. Severino; Fernando Q. Cunha; Francisco S. Guimarães

Cannabidiol (CBD) is a cannabinoid component from Cannabis sativa that does not induce psychotomimetic effects and possess anti-inflammatory properties. In the present study we tested the effects of CBD in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying these effects. Periodontal disease was induced by a ligature placed around the mandible first molars of each animal. Male Wistar rats were divided into 3 groups: control animals; ligature-induced animals treated with vehicle and ligature-induced animals treated with CBD (5 mg/kg, daily). Thirty days after the induction of periodontal disease the animals were sacrificed and mandibles and gingival tissues removed for further analysis. Morphometrical analysis of alveolar bone loss demonstrated that CBD-treated animals presented a decreased alveolar bone loss and a lower expression of the activator of nuclear factor-kappaB ligand RANKL/RANK. Moreover, gingival tissues from the CBD-treated group showed decreased neutrophil migration (MPO assay) associated with lower interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha production. These results indicate that CBD may be useful to control bone resorption during progression of experimental periodontitis in rats.


Behavioural Brain Research | 2010

Intra-dorsal periaqueductal gray administration of cannabidiol blocks panic-like response by activating 5-HT1A receptors

Vanessa de Paula Soares; Alline C. Campos; Valquíria Camin de Bortoli; Hélio Zangrossi; Francisco S. Guimarães; Antonio Waldo Zuardi

Activation of 5-HT1A receptors in the dorsal periaqueductal gray (dPAG) impairs escape behavior, suggesting a panicolytic-like effect. Cannabidiol (CBD), a major non-psychotomimetic compound present in Cannabis sativa, causes anxiolytic-like effects after intra-dPAG microinjections by activating 5-HT1A receptors. In the present work we tested the hypothesis that CBD could also impair escape responses evoked by two proposed animal models of panic: the elevated T-maze (ETM) and electric stimulation of dPAG. In experiment 1 male Wistar rats with a single cannula implanted in the dPAG received a microinjection of CBD or vehicle and, 10 min later, were submitted to the ETM and open field tests. In experiment 2 escape electrical threshold was measured in rats with chemitrodes implanted in the dPAG before and 10 min after CBD microinjection. In experiment 3 similar to experiment 2 except that the animals received a previous intra-dPAG administration of WAY-100635, a 5-HT1A receptor antagonist, before CBD treatment. In the ETM microinjection of CBD into the dPAG impaired inhibitory avoidance acquisition, an anxiolytic-like effect, and inhibited escape response, a panicolytic-like effect. The drug also increased escape electrical threshold, an effect that was prevented by WAY-100635. Together, the results suggest that CBD causes panicolytic effects in the dPAG by activating 5-HT1A receptors.


Neural Plasticity | 2009

Antiaversive Effects of Cannabinoids: Is the Periaqueductal Gray Involved?

Fabrício A. Moreira; Daniele C. Aguiar; Alline C. Campos; S.F. Lisboa; Ana Luisa B. Terzian; L.B.M. Resstel; Francisco S. Guimarães

Cannabinoids play an important role in activity-dependent changes in synaptic activity and can interfere in several brain functions, including responses to aversive stimuli. The regions responsible for their effects, however, are still unclear. Cannabinoid type 1 (CB1) receptors are widely distributed in the central nervous system and are present in the periaqueductal gray (PAG), a midbrain structure closely involved in responses related to aversive states. Accordingly, exposure to stressful stimuli increases endocannabinoid (eCB) levels in the PAG, and local administration of CB1 agonists or drugs that facilitate eCB-mediated neurotransmission produces antinociceptive and antiaversive effects. To investigate if these drugs would also interfere in animal models that are sensitive to anxiolytic drugs, we verified the responses to intra-PAG injection of CB1 agonists in rats submitted to the elevated plus-maze, the Vogel punished licking test, or contextual aversive conditioning model. The drugs induced anxiolytic-like effects in all tests. The same was observed with the transient receptor potential vanilloid type 1 (TRPV1) antagonist capsazepine and with cannabidiol, a nonpsychotomimetic phytocannabinoid that produces anxiolytic-like effects after systemic administration in humans and laboratory animals. These results, therefore, suggest that the PAG could be an important site for the antiaversive effects of cannabinoids.


European Neuropsychopharmacology | 2014

Effects of intra-prelimbic prefrontal cortex injection of cannabidiol on anxiety-like behavior: involvement of 5HT1A receptors and previous stressful experience.

Manoela V. Fogaça; Fernando M.C.V. Reis; Alline C. Campos; Francisco S. Guimarães

The prelimbic medial prefrontal cortex (PL) is an important encephalic structure involved in the expression of emotional states. In a previous study, intra-PL injection of cannabidiol (CBD), a major non-psychotomimetic cannabinoid present in the Cannabis sativa plant, reduced the expression of fear conditioning response. Although its mechanism remains unclear, CBD can facilitate 5HT1A receptor-mediated neurotransmission when injected into several brain structures. This study was aimed at verifying if intra-PL CBD could also induce anxiolytic-like effect in a conceptually distinct animal model, the elevated plus maze (EPM). We also verified if CBD effects in the EPM and contextual fear conditioning test (CFC) depend on 5HT1A receptors and previous stressful experience. CBD induced opposite effects in the CFC and EPM, being anxiolytic and anxiogenic, respectively. Both responses were prevented by WAY100,635, a 5HT1A receptor antagonist. In animals that had been previously (24h) submitted to a stressful event (2h-restraint) CBD caused an anxiolytic, rather than anxiogenic, effect in the EPM. This anxiolytic response was abolished by previous injection of metyrapone, a glucocorticoid synthesis blocker. Moreover, restraint stress increased 5HT1A receptors expression in the dorsal raphe nucleus, an effect that was attenuated by injection of metyrapone before the restraint procedure. Taken together, these results suggest that CBD modulation of anxiety in the PL depend on 5HT1A-mediated neurotransmission and previous stressful experience.


Pharmacological Research | 2016

Cannabidiol, neuroprotection and neuropsychiatric disorders.

Alline C. Campos; Manoela V. Fogaça; Andreza B. Sonego; Francisco S. Guimarães

Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has possible therapeutic effects over a broad range of neuropsychiatric disorders. CBD attenuates brain damage associated with neurodegenerative and/or ischemic conditions. It also has positive effects on attenuating psychotic-, anxiety- and depressive-like behaviors. Moreover, CBD affects synaptic plasticity and facilitates neurogenesis. The mechanisms of these effects are still not entirely clear but seem to involve multiple pharmacological targets. In the present review, we summarized the main biochemical and molecular mechanisms that have been associated with the therapeutic effects of CBD, focusing on their relevance to brain function, neuroprotection and neuropsychiatric disorders.


Journal of Psychiatric Research | 2012

Cannabidiol blocks long-lasting behavioral consequences of predator threat stress: possible involvement of 5HT1A receptors.

Alline C. Campos; Frederico Rogério Ferreira; Francisco S. Guimarães

Posttraumatic stress disorder (PTSD) is an incapacitating syndrome that follows a traumatic experience. Predator exposure promotes long-lasting anxiogenic effect in rodents, an effect related to symptoms found in PTSD patients. Cannabidiol (CBD) is a non-psychotomimetic component of Cannabis sativa with anxiolytic effects. The present study investigated the anti-anxiety actions of CBD administration in a model of PTSD. Male Wistar rats exposed to a predator (cat) received, 1 h later, singled or repeated i.p. administration of vehicle or CBD. Seven days after the stress animals were submitted to the elevated plus maze. To investigate the involvement of 5HT1A receptors in CBD effects animals were pre-treated with WAY100635, a 5HT1A receptor antagonist. To explore possible neurobiological mechanisms involved in these effects, 5HT1A receptor mRNA and BDNF protein expression were measured in the hippocampus, frontal cortex, amygdaloid complex and dorsal periaqueductal gray. Repeated administration of CBD prevented long-lasting anxiogenic effects promoted by a single predator exposure. Pretreatment with WAY100635 attenuated CBD effects. Seven days after predator exposure 5HT1A mRNA expression was up regulated in the frontal cortex and hippocampus. CBD and paroxetine failed to prevent this effect. No change in BDNF expression was found. In conclusion, predator exposure promotes long-lasting up-regulation of 5HT1A receptor gene expression in the hippocampus and frontal cortex. Repeated CBD administration prevents the long-lasting anxiogenic effects observed after predator exposure probably by facilitating 5HT1A receptors neurotransmission. Our results suggest that CBD has beneficial potential for PTSD treatment and that 5HT1A receptors could be a therapeutic target in this disorder.


Neuroscience | 2010

FACILITATION OF ENDOCANNABINOID EFFECTS IN THE VENTRAL HIPPOCAMPUS MODULATES ANXIETY-LIKE BEHAVIORS DEPENDING ON PREVIOUS STRESS EXPERIENCE

Alline C. Campos; Frederico Rogério Ferreira; Francisco S. Guimarães; J.I. Lemos

Although several pieces of evidence indicate that the endocannabinoid system modulates anxiety-like behaviors and stress adaptation, few studies have investigated the brain sites of these effects. The ventral hippocampus (VHC) has been related to anxiety behaviors and has a high expression of cannabinoid-1 (CB1) receptors. Moreover, endocannabinoid signaling in the hippocampus is proposed to regulate stress adaptation. In the present study we investigated the role of previous stressful experience on the effects of AM404, an anandamide uptake inhibitor, microinjected into the VHC of rats submitted to the elevated plus maze (EPM), a widely used animal model of anxiety. Stressed animals were forced restrained for two h 24 h before the test. AM404 (5-50 pmol) microinjection promoted an anxiogenic-like effect in non-stressed rats but decreased anxiety in stressed animals. AM251 (0.01 to 1000 pmol), a CB1 receptor antagonist, failed to change behavior in the EPM over a wide dose range but prevented the effects of AM404. Anxiolytic-like effects of AM404 (5 pmol) intra-VHC injection were also observed in the Vogel conflict test (VCT), another model of anxiety that involves previous exposure to stressful situations (48 h of water deprivation). These results suggest that facilitation of endocannabinoid system neurotransmission in the ventral hippocampus modulates anxiety-like behaviors and that this effect depends on previous stress experience.

Collaboration


Dive into the Alline C. Campos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antônio Lúcio Teixeira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aline Silva de Miranda

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Daniele C. Aguiar

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Natália Pessoa Rocha

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrício A. Moreira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Vieira de Assis Lima

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge