Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allison B. Coffin is active.

Publication


Featured researches published by Allison B. Coffin.


PLOS Genetics | 2005

Identification of Genetic and Chemical Modulators of Zebrafish Mechanosensory Hair Cell Death

Kelly N. Owens; Felipe Santos; Brock Roberts; Tor Linbo; Allison B. Coffin; Anna J. Knisely; Julian A. Simon; Edwin W. Rubel; David W. Raible

Inner ear sensory hair cell death is observed in the majority of hearing and balance disorders, affecting the health of more than 600 million people worldwide. While normal aging is the single greatest contributor, exposure to environmental toxins and therapeutic drugs such as aminoglycoside antibiotics and antineoplastic agents are significant contributors. Genetic variation contributes markedly to differences in normal disease progression during aging and in susceptibility to ototoxic agents. Using the lateral line system of larval zebrafish, we developed an in vivo drug toxicity interaction screen to uncover genetic modulators of antibiotic-induced hair cell death and to identify compounds that confer protection. We have identified 5 mutations that modulate aminoglycoside susceptibility. Further characterization and identification of one protective mutant, sentinel (snl), revealed a novel conserved vertebrate gene. A similar screen identified a new class of drug-like small molecules, benzothiophene carboxamides, that prevent aminoglycoside-induced hair cell death in zebrafish and in mammals. Testing for interaction with the sentinel mutation suggests that the gene and compounds may operate in different pathways. The combination of chemical screening with traditional genetic approaches is a new strategy for identifying drugs and drug targets to attenuate hearing and balance disorders.


The Journal of Experimental Biology | 2006

Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure.

Michael E. Smith; Allison B. Coffin; Diane L. Miller; Arthur N. Popper

SUMMARY Fishes can regenerate lateral line and inner ear sensory hair cells that have been lost following exposure to ototoxic antibiotics. However, regenerative capabilities following noise exposure have not been explored in fish. Moreover, nothing is known about the functional relationship between hair cell damage and hearing loss, or the time course of morphological versus functional recovery in fishes. This study examines the relationship between hair cell damage and physiological changes in auditory responses following noise exposure in the goldfish (Carassius auratus). Goldfish were exposed to white noise (170 dB re. 1 μPa RMS) for 48 h and monitored for 8 days after exposure. Auditory thresholds were determined using the auditory evoked potential technique, and morphological hair cell damage was analyzed using phalloidin and DAPI labeling to visualize hair cell bundles and nuclei. A TUNEL assay was used to identify apoptotic cells. Following noise exposure, goldfish exhibited a significant temporary threshold shift (TTS; ranging from 13 to 20 dB) at all frequencies tested (from 0.2-2 kHz). By 7 days post-exposure, goldfish hearing recovered significantly (mean TTS<4 dB). Increased apoptotic activity was observed in the saccules and lagenae between 0 and 2 days post-exposure. Immediately after noise exposure, the central and caudal regions of saccules exhibited significant loss of hair bundles. Hair bundle density in the central saccule recovered by the end of the experiment (8 days post-exposure) while bundle density in the caudal saccule did not return to control levels in this time frame. These data demonstrate that goldfish inner ear epithelia show damage following noise exposure and that they are capable of significant regenerative responses similar to those seen following ototoxic drug treatment. Interestingly, functional recovery preceded morphological recovery in the goldfish saccule, suggesting that only a subset of hair cells are necessary for normal auditory responses, at least to the extent that hearing was measured in this study.


Zebrafish | 2010

Chemical Screening for Hair Cell Loss and Protection in the Zebrafish Lateral Line

Allison B. Coffin; Henry C. Ou; Kelly N. Owens; Felipe Santos; Julian A. Simon; Edwin W. Rubel; David W. Raible

In humans, most hearing loss results from death of hair cells, the mechanosensory receptors of the inner ear. Two goals of current hearing research are to protect hair cells from degeneration and to regenerate new hair cells, replacing those that are lost due to aging, disease, or environmental challenges. One limitation of research in the auditory field has been the relative inaccessibility of the mechanosensory systems in the inner ear. Zebrafish possess hair cells in both their inner ear and their lateral line system that are morphologically and functionally similar to human hair cells. The external location of the mechanosensory hair cells in the lateral line and the ease of in vivo labeling and imaging make the zebrafish lateral line a unique system for the study of hair cell toxicity, protection, and regeneration. This review focuses on the lateral line system as a model for understanding loss and protection of mechanosensory hair cells. We discuss chemical screens to identify compounds that induce hair cell loss and others that protect hair cells from known toxins and the potential application of these screens to human medicine.


Hearing Research | 2009

Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways

Kelly N. Owens; Allison B. Coffin; Lisa S. Hong; Keri O’Connell Bennett; Edwin W. Rubel; David W. Raible

We report a series of experiments investigating the kinetics of hair cell loss in lateral line neuromasts of zebrafish larvae following exposure to aminoglycoside antibiotics. Comparisons of the rate of hair cell loss and the differential effects of acute versus chronic exposure to gentamicin and neomycin revealed markedly different results. Neomycin induced rapid and dramatic concentration-dependent hair cell loss that is essentially complete within 90 min, regardless of concentration or exposure time. Gentamicin-induced loss of half of the hair cells within 90 min and substantial additional loss, which was prolonged and cumulative over exposure times up to at least 24h. Small molecules and genetic mutations that inhibit neomycin-induced hair cell loss were ineffective against prolonged gentamicin exposure supporting the hypothesis that these two drugs are revealing at least two cellular pathways. The mechanosensory channel blocker amiloride blocked both neomycin and gentamicin-induced hair cell death acutely and chronically indicating that these aminoglycosides share a common entry route. Further tests with additional aminoglycosides revealed a spectrum of differential responses to acute and chronic exposure. The distinctions between the times of action of these aminoglycosides indicate that these drugs induce multiple cell death pathways.


Hearing Research | 2009

Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line

Allison B. Coffin; Katherine E. Reinhart; Kelly N. Owens; David W. Raible; Edwin W. Rubel

Aminoglycoside antibiotics cause death of sensory hair cells. Research over the past decade has identified several key players in the intracellular cascade. However, the role of the extracellular environment in aminoglycoside ototoxicity has received comparatively little attention. The present study uses the zebrafish lateral line to demonstrate that extracellular calcium and magnesium ions modulate hair cell death from neomycin and gentamicin in vivo, with high levels of either divalent cation providing significant protection. Imaging experiments with fluorescently-tagged gentamicin show that drug uptake is reduced under high calcium conditions. Treating fish with the hair cell transduction blocker amiloride also reduces aminoglycoside uptake, preventing the toxicity, and experiments with variable calcium and amiloride concentrations suggest complementary effects between the two protectants. Elevated magnesium, in contrast, does not appear to significantly attenuate drug uptake, suggesting that the two divalent cations may protect hair cells from aminoglycoside damage through different mechanisms. These results provide additional evidence for calcium- and transduction-dependent aminoglycoside uptake. Divalent cations provided differential protection from neomycin and gentamicin, with high cation concentrations almost completely protecting hair cells from neomycin and acute gentamicin toxicity, but offering reduced protection from continuous (6 h) gentamicin exposure. These experiments lend further support to the hypothesis that aminoglycoside toxicity occurs via multiple pathways in a both a drug and time course-specific manner.


Archive | 2004

Evolution of Sensory Hair Cells

Allison B. Coffin; Matthew W. Kelley; Geoffrey A. Manley; Arthur N. Popper

The ears of all vertebrate species use sensory hair cells (Fig. 3.1) to convert mechanical energy to electrical signals compatible with the nervous system. However, although the basic structure of hair cells is ubiquitous among the vertebrates and hair cells are also found in the lateral line of fishes and aquatic amphibians, a growing body of literature has demonstrated considerable heterogeneity in morphology and physiology in different taxa and even within different end organs of the same species. Although far less is known about the functional diversity that accompanies the differences in structure and physiology, it is increasingly likely that these differences reflect the ability to respond to different types of signals and/or to process signals in different ways before a neurotransmitter is released and a signal is sent to the brain.


Jaro-journal of The Association for Research in Otolaryngology | 2013

Bax, Bcl2, and p53 Differentially Regulate Neomycin- and Gentamicin-Induced Hair Cell Death in the Zebrafish Lateral Line

Allison B. Coffin; Edwin W. Rubel; David W. Raible

Sensorineural hearing loss is a normal consequence of aging and results from a variety of extrinsic challenges such as excessive noise exposure and certain therapeutic drugs, including the aminoglycoside antibiotics. The proximal cause of hearing loss is often death of inner ear hair cells. The signaling pathways necessary for hair cell death are not fully understood and may be specific for each type of insult. In the lateral line, the closely related aminoglycoside antibiotics neomycin and gentamicin appear to kill hair cells by activating a partially overlapping suite of cell death pathways. The lateral line is a system of hair cell-containing sense organs found on the head and body of aquatic vertebrates. In the present study, we use a combination of pharmacologic and genetic manipulations to assess the contributions of p53, Bax, and Bcl2 in the death of zebrafish lateral line hair cells. Bax inhibition significantly protects hair cells from neomycin but not from gentamicin toxicity. Conversely, transgenic overexpression of Bcl2 attenuates hair cell death due to gentamicin but not neomycin, suggesting a complex interplay of pro-death and pro-survival proteins in drug-treated hair cells. p53 inhibition protects hair cells from damage due to either aminoglycoside, with more robust protection seen against gentamicin. Further experiments evaluating p53 suggest that inhibition of mitochondrial-specific p53 activity confers significant hair cell protection from either aminoglycoside. These results suggest a role for mitochondrial p53 activity in promoting hair cell death due to aminoglycosides, likely upstream of Bax and Bcl2.


The Journal of Neuroscience | 2013

Disruption of Intracellular Calcium Regulation Is Integral to Aminoglycoside-Induced Hair Cell Death

Robert Esterberg; Dale W. Hailey; Allison B. Coffin; David W. Raible; Edwin W. Rubel

Intracellular Ca2+ is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca2+ in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca2+ dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca2+ indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca2+ dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca2+ that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca2+ elevation through either caged chelators or pharmacological inhibitors of Ca2+ effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca2+ by caged Ca2+ release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca2+ homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.


The Journal of Neuroscience | 2013

Functional Mechanotransduction Is Required for Cisplatin-Induced Hair Cell Death in the Zebrafish Lateral Line

Andrew J. Thomas; Dale W. Hailey; Tamara M. Stawicki; Patricia Wu; Allison B. Coffin; Edwin W. Rubel; David W. Raible; Julian A. Simon; Henry C. Ou

Cisplatin, one of the most commonly used anticancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analog of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line.


Apoptosis | 2013

Profiling drug-induced cell death pathways in the zebrafish lateral line.

Allison B. Coffin; Kay L. Williamson; Anna Mamiya; David W. Raible; Edwin W. Rubel

Programmed cell death (PCD) is an important process in development and disease, as it allows the body to rid itself of unwanted or damaged cells. However, PCD pathways can also be activated in otherwise healthy cells. One such case occurs in sensory hair cells of the inner ear following exposure to ototoxic drugs, resulting in hearing loss and/or balance disorders. The intracellular pathways that determine if hair cells die or survive following this or other ototoxic challenges are incompletely understood. We use the larval zebrafish lateral line, an external hair cell-bearing sensory system, as a platform for profiling cell death pathways activated in response to ototoxic stimuli. In this report the importance of each pathway was assessed by screening a custom cell death inhibitor library for instances when pathway inhibition protected hair cells from the aminoglycosides neomycin or gentamicin, or the chemotherapy agent cisplatin. This screen revealed that each ototoxin likely activated a distinct subset of possible cell death pathways. For example, the proteasome inhibitor Z-LLF-CHO protected hair cells from either aminoglycoside or from cisplatin, while d-methionine, an antioxidant, protected hair cells from gentamicin or cisplatin but not from neomycin toxicity. The calpain inhibitor leupeptin primarily protected hair cells from neomycin, as did a Bax channel blocker. Neither caspase inhibition nor protein synthesis inhibition altered the progression of hair cell death. Taken together, these results suggest that ototoxin-treated hair cells die via multiple processes that form an interactive network of cell death signaling cascades.

Collaboration


Dive into the Allison B. Coffin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin W. Rubel

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Xu

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Michael E. Smith

Western Kentucky University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian A. Simon

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Kelly N. Owens

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge