Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allison Hubel is active.

Publication


Featured researches published by Allison Hubel.


Transfusion | 2014

Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices

Ratti Ram Sharma; Kathryn Pollock; Allison Hubel; David H. McKenna

Mesenchymal stem cells (MSCs) have recently generated great interest in the fields of regenerative medicine and immunotherapy due to their unique biologic properties. In this review we attempt to provide an overview of the current clinical status of MSC therapy, primarily focusing on immunomodulatory and regenerative or tissue repair applications of MSCs. In addition, current manufacturing is reviewed with attention to variation in practices (e.g., starting material, approach to culture and product testing). There is considerable variation among the 218 clinical trials assessed here; variations include proposed mechanisms of action, optimal dosing strategy, and route of administration. To ensure the greatest likelihood of success in clinical trials as the field progresses, attention must be given to the optimization of MSC culture.


Tissue Engineering | 2000

In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix.

Elizabeth J. Orwin; Allison Hubel

The objective of this investigation was to demonstrate the effectiveness of a tissue-engineered collagen sponge as a substrate for the culture of human corneal cells. To that end, human kerotocyte, epithelial, and endothelial cells were cultured separately on collagen sponges composed of native fibrillar collagen with a pore size of approximately 0.1 mm. Co-culture experiments were also performed (epithelial/endothelial and epithelial/keratocyte cultures). Proliferation of keratocytes and matrix production was assessed. The morphology of the epithelial and endothelial cell cultures was characterized by histology and scanning electron microscopy. Keratocytes cultured on collagen sponges exhibited increased matrix synthesis over time as well as proliferation and repopulation of the matrix. Epithelial and endothelial cells showed the ability to migrate over the collagen sponge. The thickness of the epithelial layer was influenced by soluble factors produced by endothelial cells. The morphology of the bottom layer of epithelial cells was influenced by the presence of keratocytes in the culture. These studies indicate that human corneal cells exhibit normal cell phenotype when cultured individually on an engineered collagen sponge matrix and co-culture of different cell types in the cornea can influence cell behavior.


Journal of Biomechanical Engineering-transactions of The Asme | 2003

Biomechanical and Optical Characteristics of a Corneal Stromal Equivalent

Elizabeth Orwin; Melinda L. Borene; Allison Hubel

Cell matrix interactions are important in understanding the healing characteristics of the cornea after refractive surgery or transplantation. The purpose of this study was to characterize in more detail the evolution of biomechanical and optical properties of a stromal equivalent (stromal fibroblasts cultured in a collagen matrix). Human corneal stromal fibroblasts were cultured in a collagen matrix. Compaction and modulus were determined for the stromal equivalent as a function of time in culture and matrix composition. The corneal stromal fibroblasts were stained for alpha-smooth muscle actin expression as an indicator of myofibroblast phenotype. The nominal modulus of the collagen matrix was 364 +/- 41 Pa initial and decreased initially with time in culture and then slowly increased to 177 +/- 75 Pa after 21 days. The addition of chondroitin sulfate decreased the contraction of the matrix and enhanced its transparency. Cell phenotype studies showed dynamic changes in the expression of alpha-smooth muscle actin with time in culture. These results indicate that the contractile behavior of corneal stromal cells can be influenced by both matrix composition and time in culture. Changes in contractile phenotype after completion of the contraction process also indicate that significant cellular changes persist beyond the initial matrix-remodeling phase.


Journal of Physical Chemistry B | 2009

Freezing-induced phase separation and spatial microheterogeneity in protein solutions.

Jinping Dong; Allison Hubel; John C. Bischof; Alptekin Aksan

Amid decades of research, the basic mechanisms of lyo-/cryostabilization of proteins and more complex organisms have not yet been fully established. One major bottleneck is the inability to probe into and control the molecular level interactions. The molecular interactions are responsible for the significant differences in the outcome of the preservation processes. (1) In this communication, we have utilized confocal Raman microspectroscopy to quantify the freezing-induced microheterogeneity and phase separation (solid and liquid) in a frozen solution composed of a model protein (lysozyme) and a lyo-/cryoprotectant (trehalose), which experienced different degrees of supercooling. Detailed quantitative spectral analysis was performed across the ice, the freeze-concentrated liquid (FCL) phases, and the interface region between them. It was established that the characteristics of the microstructures observed after freezing depended not only on the concentration of trehalose in the solution but also on the degree of supercooling. It was shown that, when samples were frozen after high supercooling, small amounts of lysozyme and trehalose were occluded in the ice phase. Lysozyme preserved its native-like secondary structure in the FCL region but was denatured in the ice phase. Also, it was observed that induction of freezing after a high degree of supercooling of high trehalose concentrations resulted in aggregation of the sugar and the protein.


Annals of Biomedical Engineering | 2004

Mechanical and cellular changes during compaction of a collagen-sponge- based corneal stromal equivalent

Melinda L. Borene; Victor H. Barocas; Allison Hubel

The need for corneas suitable for transplantation, combined with the decreasing supply, has fueled interest in the development of a corneal replacement. In this study, a collagen-sponge-based stromal equivalent, consisting of human corneal fibroblasts cultured on a type I collagen sponge, was maintained in culture for up to 21 days and characterized with respect to mechanical properties and cellular behavior. The Youngs modulus of the stromal equivalent varied from 95 to 370 Pa, and its permeability varied from 5.3 × 10–8–4.2 × 10–7 m4 N–1 s–1. The greatest changes occurred during the first few days in culture, but the mechanical properties continued to change during the entire 21 days. Cell traction stress, determined from sponge compaction and DNA count, decreased during the compaction process with the maximum traction value the initial value of 6.6 ± 2.9 times; 10–3 Pa cm3 cell–1. Microarray data showed that the expression level of fibronectin, decorin sulfate, collagenase, and gelatinase A was upregulated at day 14 in the sponge. This suggested that the repair fibroblast phenotype was being expressed by the fibroblasts. Additional analysis suggested that a subpopulation of cells expressed the myofibroblast phenotype.


Transfusion | 2010

Long‐term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer

Jeffrey McCullough; Rebecca Haley; Mary C. Clay; Allison Hubel; Bruce Lindgren; Gary Moroff

BACKGROUND: Cryopreservation of hematopoietic progenitor cells using liquid nitrogen and controlled‐rate freezing requires complex equipment and highly trained staff and is expensive. We compared the liquid nitrogen method with methods using a combination of dimethyl sulfoxide (DMSO) and hydroxyethyl starch (HES) for cryopreservation followed by storage in mechanical freezers.


Cryobiology | 2010

Response of the cell membrane–cytoskeleton complex to osmotic and freeze/thaw stresses☆

Vishard Ragoonanan; Allison Hubel; Alptekin Aksan

In order to develop successful cryopreservation protocols a better understanding of the freeze- and dehydration-induced changes occurring in the cell membrane and its underlying support, the actin cytoskeleton, is required. In this study, we compared the biophysical response of model mammalian cells (human foreskin fibroblasts) to hyperosmotic stress and freeze/thaw. Transmitted light, infrared spectroscopy, fluorescence- and cryo-microscopy were used to investigate the changes in the cell membrane and the actin cytoskeleton. We observed that a purely hyperosmotic challenge at room temperature resulted in bleb formation. A decrease in temperature abrogated the blebbing behavior, but was accompanied by a decrease in viability. These results suggested that cell survival depended on the availability of the membrane material to accommodate the volumetric expansion back to the original cell volume at isotonic conditions. Our data also showed that freeze/thaw stresses altered the cell membrane morphology resulting in a loss of membrane material. There was also a significantly lower incidence of blebbing after freeze/thaw as compared to isothermal osmotic stress experiments at room temperature. Significant depolymerization of the actin cytoskeleton was seen in cells whose membranes had been compromised by freeze/thaw stresses. Actin depolymerization using cytochalasin D affected the stability of the membrane against mechanical stress at isothermal conditions. This study shows that both the membrane and cytoskeleton, as a system, are involved in the osmotic and freeze/thaw-induced responses of the mammalian cells.


Biophysical Journal | 2010

Spatial Distribution of the State of Water in Frozen Mammalian Cells

Jinping Dong; Jason Malsam; John C. Bischof; Allison Hubel; Alptekin Aksan

We describe direct determination of the state of intracellular water, measurement of the intercellular concentration of a cryoprotectant agent (dimethylsulfoxide), and the distribution of organic material in frozen mammalian cells. Confocal Raman microspectroscopy was utilized at cryogenic temperatures with single live cells to conduct high spatial resolution measurements (350 × 350 × 700 nm), which yielded two, we believe, novel observations: 1), intracellular ice formation during fast cooling (50°C/min) causes more pronounced intracellular dehydration than slow cooling (1°C/min); and 2), intracellular dimethylsulfoxide concentration is lower (by as much as 50%) during fast cooling, decreasing the propensity for intracellular vitrification. These observations have a very significant impact for developing successful biopreservation protocols for cells used for therapeutic purposes and for cellular biofluids.


Organogenesis | 2009

Preservation of stem cells.

Jacob Hanna; Allison Hubel

Adult stem cells (hematopoietic and mesenchymal) have demonstrated tremendous human therapeutic potential. Currently, human embryonic stem cells are used principally for understanding development and disease progression but also hold tremendous therapeutic potential. The ability to preserve stem cells is critical for their use in clinical and research applications. Preservation of cells permits the transportation of cells between sites, as well as completion of safety and quality control testing. Preservation also permits the development of a ‘manufacturing paradigm’ for cell therapies, thereby maximizing the number of products that can be produced at a given facility. In this article, we will review modes of preservation and the current status of preservation of hematopoietic, mesenchymal and human embryonic stem cells. Current and emerging issues in the area of stem cell preservation will also be described.


Transfusion | 2004

Liquid storage, shipment, and cryopreservation of cord blood

Allison Hubel; Dale Carlquist; Mary Clay; J. McCullough

BACKGROUND: Cord blood banking requires methods for shipping and storage. This study examines the influence of shipping via overnight courier on postthaw viability of cord blood.

Collaboration


Dive into the Allison Hubel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clara Mata

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge