Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allison L. Germann is active.

Publication


Featured researches published by Allison L. Germann.


Current Neuropharmacology | 2016

Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol

Megan M. Eaton; Allison L. Germann; Ruby Arora; Lily Q. Cao; Xiaoyi Gao; Daniel J. Shin; Albert Wu; David C. Chiara; Jonathan B. Cohen; Joe Henry Steinbach; Alex S. Evers; Gustav Akk

Abstract: Background Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the “+” of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the “-” side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. Method We used two-electrode voltage clamp to determine the functional effects of mutations to the 
“+” and “-” sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. Results We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. Conclusion We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol.


British Journal of Pharmacology | 2016

Activation and modulation of recombinant glycine and GABAA receptors by 4‐halogenated analogues of propofol

Allison L. Germann; Daniel J. Shin; Brad D. Manion; Christopher J. Edge; Edward H. Smith; Nicholas P. Franks; Alex S. Evers; Gustav Akk

Glycine receptors are important players in pain perception and movement disorders and therefore important therapeutic targets. Glycine receptors can be modulated by the intravenous anaesthetic propofol (2,6‐diisopropylphenol). However, the drug is more potent, by at least one order of magnitude, on GABAA receptors. It has been proposed that halogenation of the propofol molecule generates compounds with selective enhancement of glycinergic modulatory properties.


Molecular Pharmacology | 2018

GABA Type A Receptor Activation in the Allosteric Coagonist Model Framework: Relationship between EC50 and Basal Activity

Gustav Akk; Daniel J. Shin; Allison L. Germann; Joe Henry Steinbach

The concerted transition model for multimeric proteins is a simple formulation for analyzing the behavior of transmitter-gated ion channels. We used the model to examine the relationship between the EC50 for activation of the GABA type A (GABAA) receptor by the transmitter GABA and basal activity employing concatemeric ternary GABAA receptors expressed in Xenopus oocytes. Basal activity, reflecting the receptor function in the absence of the transmitter, can be changed either by mutation to increase constitutive activity or by the addition of a second agonist (acting at a different site) to increase background activity. The model predicts that either mechanism for producing a change in basal activity will result in identical effects on the EC50. We examined receptor activation by GABA while changing the level of basal activity with the allosterically acting anesthetics propofol, pentobarbital, or alfaxalone. We found that the relationship between EC50 and basal activity was well described by the concerted transition model. Changes in the basal activity by gain-of-function mutations also resulted in predictable changes in the EC50. Finally, we altered the number of GABA-binding sites by a mutation and again found that the relationship could be well described by the model. Overall, the results support the idea that interactions between the transmitter GABA and the allosteric agonists propofol, pentobarbital, or alfaxalone can be understood as reflecting additive and independent free energy changes, without assuming any specific interactions.


Molecular Pharmacology | 2017

The E Loop of the Transmitter Binding Site Is a Key Determinant of the Modulatory Effects of Physostigmine on Neuronal Nicotinic α4β2 Receptors.

Xiaochun Jin; Megan McCollum; Allison L. Germann; Gustav Akk; Joe Henry Steinbach

Physostigmine is a well known inhibitor of acetylcholinesterase, which can also activate, potentiate, and inhibit acetylcholine receptors, including neuronal nicotinic receptors comprising α4 and β2 subunits. We have found that the two stoichiometric forms of this receptor differ in the effects of physostigmine. The form containing three copies of α4 and two of β2 was potentiated at low concentrations of acetylcholine chloride (ACh) and physostigmine, whereas the form containing two copies of α4 and three of β2 was inhibited. Chimeric constructs of subunits indicated that the presence of inhibition or potentiation depended on the source of the extracellular ligand binding domain of the subunit. Further sets of chimeric constructs demonstrated that a portion of the ACh binding domain, the E loop, is a key determinant. Transferring the E loop from the β2 subunit to the α4 subunit resulted in strong inhibition, whereas the reciprocal transfer reduced inhibition. To control the number and position of the incorporated chimeric subunits, we expressed chimeric constructs with subunit dimers. Surprisingly, incorporation of a subunit with an altered E loop had similar effects whether it contributed either to an intersubunit interface containing a canonical ACh binding site or to an alternative interface. The observation that the α4 E loop is involved suggests that physostigmine interacts with regions of subunits that contribute to the ACh binding site, whereas the lack of interface specificity indicates that interaction with a particular ACh binding site is not the critical factor.


Molecular Pharmacology | 2017

Propofol Is an Allosteric Agonist with Multiple Binding Sites on Concatemeric Ternary GABAA Receptors

Daniel J. Shin; Allison L. Germann; Alexander Johnson; Stuart A. Forman; Joe Henry Steinbach; Gustav Akk

GABAA receptors can be directly activated and potentiated by the intravenous anesthetic propofol. Previous photolabeling, modeling, and functional data have identified two binding domains through which propofol acts on the GABAA receptor. These domains are defined by the β(M286) residue at the β“+”–α“−” interface in the transmembrane region and the β(Y143) residue near the β“−” surface in the junction between the extracellular and transmembrane domains. In the ternary receptor, there are predicted to be two copies of each class of sites, for a total of four sites per receptor. We used β2α1γ2L and β2α1 concatemeric constructs to determine the functional effects of the β(Y143W) and β(M286W) mutations to gain insight into the number of functional binding sites for propofol and the energetic contributions stemming from propofol binding to the individual sites. A mutation of each of the four sites affected the response to propofol, indicating that each of the four sites is functional in the wild-type receptor. The mutations mainly impaired stabilization of the open state by propofol, i.e., reduced gating efficacy. The effects were similar for mutations at either site and were largely additive and independent of the presence of other Y143W or M286W mutations in the receptor. The two classes of sites appeared to differ in affinity for propofol, with the site affected by M286W having about a 2-fold higher affinity. Our analysis indicates there may be one or two additional functionally equivalent binding sites for propofol, other than those modified by substitutions at β(Y143) and β(M286).


Molecular Pharmacology | 2017

The actions of drug combinations on the GABAA receptor manifest as curvilinear isoboles of additivity

Daniel J. Shin; Allison L. Germann; Joe Henry Steinbach; Gustav Akk

Drug interactions are often analyzed in terms of isobolograms. In the isobologram, the line connecting the axial points corresponding to the concentrations of two different drugs that produce an effect of the same magnitude is termed an isobole of additivity. Although the isobole of additivity can be a straight line in some special cases, previous work has proposed that it is curvilinear when the two drugs differ in their maximal effects or Hill slopes. Modulators of transmitter-gated ion channels have a wide range of maximal effects as well as Hill slopes, suggesting that the isoboles for drug actions on ion channel function are not linear. In this study, we have conducted an analysis of direct activation and potentiation of the human α1β2γ2L GABAA receptor to demonstrate that: 1) curvilinear isoboles of additivity are predicted by a concerted transition model where the binding of each GABAergic drug additively and independently reduces the free energy of the open receptor compared with the closed receptor; and 2) experimental data for receptor activation using the agonist pair of GABA and propofol or potentiation of responses to a low concentration of GABA by the drug pair of alfaxalone and propofol agree very well with predictions. The approach assuming independent energetic contributions from GABAergic drugs enables, at least for the drug combinations tested, a straightforward method to accurately predict functional responses to any combination of concentrations.


Pharmacogenomics Journal | 2018

Nicotine dependence is associated with functional variation in FMO3, an enzyme that metabolizes nicotine in the brain

A M Teitelbaum; Sharon E. Murphy; Gustav Akk; Timothy B. Baker; Allison L. Germann; L B von Weymarn; Laura J. Bierut; Alison Goate; Evan D. Kharasch; A J Bloom

A common haplotype of the flavin-containing monooxygenase gene FMO3 is associated with aberrant mRNA splicing, a twofold reduction in in vivo nicotine N-oxidation and reduced nicotine dependence. Tobacco remains the largest cause of preventable mortality worldwide. CYP2A6, the primary hepatic nicotine metabolism gene, is robustly associated with cigarette consumption but other enzymes contribute to nicotine metabolism. We determined the effects of common variants in FMO3 on plasma levels of nicotine-N-oxide in 170 European Americans administered deuterated nicotine. The polymorphism rs2266780 (E308G) was associated with N-oxidation of both orally administered and ad libitum smoked nicotine (P⩽3.3 × 10−5 controlling for CYP2A6 genotype). In vitro, the FMO3 G308 variant was not associated with reduced activity, but rs2266780 was strongly associated with aberrant FMO3 mRNA splicing in both liver and brain (P⩽6.5 × 10−9). Surprisingly, in treatment-seeking European American smokers (n=1558) this allele was associated with reduced nicotine dependence, specifically with a longer time to first cigarette (P=9.0 × 10−4), but not with reduced cigarette consumption. As N-oxidation accounts for only a small percentage of hepatic nicotine metabolism we hypothesized that FMO3 genotype affects nicotine metabolism in the brain (unlike CYP2A6, FMO3 is expressed in human brain) or that nicotine-N-oxide itself has pharmacological activity. We demonstrate for the first time nicotine N-oxidation in human brain, mediated by FMO3 and FMO1, and show that nicotine-N-oxide modulates human α4β2 nicotinic receptor activity in vitro. These results indicate possible mechanisms for associations between FMO3 genotype and smoking behaviors, and suggest nicotine N-oxidation as a novel target to enhance smoking cessation.


bioRxiv | 2018

Multiple Functional Neurosteroid Binding Sites on GABAA Receptors

Zi-Wei Chen; John Bracamontes; Melissa M. Budelier; Allison L. Germann; Daniel J. Shin; Krishnan Kathiresan; Mingxing Qian; Brad D. Manion; Wayland W.L. Cheng; David E. Reichert; Gustav Akk; Douglas F. Covey; Alex S. Evers

Neurosteroids are endogenous modulators of neuronal excitability and nervous system development and are being developed as anesthetic agents and treatments for psychiatric diseases. While GABAA receptors are the primary molecular targets of neurosteroid action, the structural details of neurosteroid binding to these proteins remain ill-defined. We synthesized neurosteroid analogue photolabeling reagents in which the photolabeling groups were placed at three positions around the neurosteroid ring structure, enabling identification of binding sites and mapping of neurosteroid orientation within these sites. Using middle-down mass spectrometry, we identified three clusters of photolabeled residues representing three distinct neurosteroid binding sites in the human α1β3GABAA receptor. Novel intrasubunit binding sites were identified within the transmembrane helical bundles of both the α1 and β3 subunits, adjacent to the extracellular domains. An intersubunit site in the interface between the β3(+) and α1(-) subunits of the GABAA receptor pentamer was also identified. Computational docking studies of neurosteroid to the three sites predicted critical residues contributing to neurosteroid interaction with the GABAA receptors. Electrophysiological studies based on these predictions indicate that both the α1 intrasubunit and β3-α1 intersubunit sites are critical for neurosteroid action.


Scientific Reports | 2018

Enhanced GABAergic actions resulting from the coapplication of the steroid 3α-hydroxy-5α-pregnane-11,20-dione (alfaxalone) with propofol or diazepam

Lily Q. Cao; Michael C. Montana; Allison L. Germann; Daniel J. Shin; Sampurna Chakrabarti; Steven Mennerick; Carla M. Yuede; David F. Wozniak; Alex S. Evers; Gustav Akk

Many GABAergic drugs are in clinical use as anesthetics, sedatives, or anxiolytics. We have investigated the actions of the combinations of the neuroactive steroid 3α-hydroxy-5α-pregnane-11,20-dione (alfaxalone) with the intravenous anesthetic propofol or the benzodiazepine diazepam. The goal of the study was to determine whether coapplication of alfaxalone reduces the effective doses and concentrations of propofol and diazepam. Behavioral effects of alfaxalone, propofol, diazepam, and the combinations of the drugs were evaluated during a 30-min activity test in mice. Functional effects of the individual drugs and drug combinations were tested by measuring the decay times of spontaneous inhibitory postsynaptic currents in rat hippocampal neurons, and peak current responses from heterologously expressed concatemeric α1β2γ2L GABAA receptors. Co-administration of alfaxalone increased the sedative actions of propofol and diazepam in mice. The combination of alfaxalone with propofol or diazepam increased the decay times of sIPSCs and shifted the concentration-response relationships for GABA-activated receptors to lower transmitter concentrations. We infer that alfaxalone acts as a co-agonist to enhance the GABAergic effects of propofol and diazepam. We propose that co-administration of alfaxalone, and possibly other neuroactive steroids, can be employed to reduce dosage requirements for propofol and diazepam.


Molecular Pharmacology | 2018

Analysis of GABAA receptor activation by combinations of agonists acting at the same or distinct binding sites

Daniel J. Shin; Allison L. Germann; Douglas F. Covey; Joseph H. Steinbach; Gustav Akk

Under both physiologic and clinical conditions GABAA receptors are exposed to multiple agonists, including the transmitter GABA, endogenous or exogenous neuroactive steroids, and various GABAergic anesthetic and sedative drugs. The functional output of the receptor reflects the interplay among all active agents. We have investigated the activation of the concatemeric α1β2γ2L GABAA receptor by combinations of agonists. Simulations of receptor activity using the coagonist concerted transition model demonstrate that the response amplitude in the presence of agonist combinations is highly dependent on whether the paired agonists interact with the same or distinct sites. The experimental data for receptor activation by agonist combinations were in agreement with the established views of the overlap of binding sites for several pairs of orthosteric (GABA, β-alanine, and piperidine-4-sulfonic acid) and/or allosteric agents (propofol, pentobarbital, and several neuroactive steroids). Conversely, the degree of potentiation when two GABAergic agents are coapplied can be used to determine whether the compounds act by binding to the same or distinct sites. We show that common interaction sites mediate the actions of 5α- and 5β-reduced neuroactive steroids, and natural and enantiomeric steroids. Furthermore, the results indicate that the anesthetics propofol and pentobarbital interact with partially shared binding sites. We propose that the findings may be used to predict the efficacy of drug mixtures in combination therapy and thus have potential clinical relevance.

Collaboration


Dive into the Allison L. Germann's collaboration.

Top Co-Authors

Avatar

Gustav Akk

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Shin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joe Henry Steinbach

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alex S. Evers

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alexander Johnson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brad D. Manion

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Douglas F. Covey

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lily Q. Cao

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Xiaochun Jin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

A M Teitelbaum

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge