Allison L. Stelling
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Allison L. Stelling.
Journal of Structural Biology | 2013
Hermann Ehrlich; Oksana V. Kaluzhnaya; Eike Brunner; Mikhail V. Tsurkan; Alexander V. Ereskovsky; Micha Ilan; Konstantin R. Tabachnick; Vasilii V. Bazhenov; Silvia Paasch; Martin Kammer; René Born; Allison L. Stelling; Roberta Galli; S. I. Belikov; O. V. Petrova; Victor V. Sivkov; D. V. Vyalikh; Sebastian Hunoldt; Gert Wörheide
This work demonstrates that chitin is an important structural component within the skeletal fibers of the freshwater sponge Spongilla lacustris. Using a variety of analytical techniques ((13)C solid state NMR, FT-IR, Raman, NEXAFS, ESI-MS, Morgan-Elson assay and Calcofluor White Staining); we show that this sponge chitin is much closer to α-chitin, known to be present in other animals, than to β-chitin. Genetic analysis confirmed the presence of chitin synthases, which are described for the first time in a sponge. The presence of chitin in both marine (demosponges and hexactinellids) and freshwater sponges indicates that this important structural biopolymer was already present in their common ancestor.
International Journal of Biological Macromolecules | 2013
Marcin Wysokowski; Vasilii V. Bazhenov; Mikhail V. Tsurkan; Roberta Galli; Allison L. Stelling; Hartmut Stöcker; Sabine Kaiser; Elke Niederschlag; Günter Gärtner; Thomas Behm; Micha Ilan; Alexander Y. Petrenko; Teofil Jesionowski; Hermann Ehrlich
The recent discovery of chitin within skeletons of numerous marine and freshwater sponges (Porifera) stimulates further experiments to identify this structural aminopolysaccharide in new species of these aquatical animals. Aplysina fistularis (Verongida: Demospongiae: Porifera) is well known to produce biologically active bromotyrosines. Here, we present a detailed study of the structural and physico-chemical properties of the three-dimensional skeletal scaffolds of this sponge. Calcofluor white staining, Raman and IR spectroscopy, ESI-MS as well as chitinase digestion test were applied in order to unequivocally prove the first discovery of α-chitin in skeleton of A. fistularis.
Journal of Materials Chemistry B | 2013
Marcin Wysokowski; Mykhailo Motylenko; Hartmut Stöcker; Vasilii V. Bazhenov; Enrico Langer; Anna Dobrowolska; Katarzyna Czaczyk; Roberta Galli; Allison L. Stelling; Thomas Behm; Łukasz Klapiszewski; Damian Ambrożewicz; Magdalena Nowacka; S. L. Molodtsov; Barbara Abendroth; Dirk C. Meyer; Krzysztof J. Kurzydłowski; Teofil Jesionowski; Hermann Ehrlich
β-Chitinous scaffolds isolated from the skeleton of marine cephalopod Sepia officinalis were used as a template for the in vitro formation of ZnO under conditions (70 °C) which are extreme for biological materials. Novel β-chitin/ZnO film-like composites were prepared for the first time by hydrothermal synthesis, and were thoroughly characterized using numerous analytical methods including Raman spectroscopy, HR-TEM and XRD. We demonstrate the growth of hexagonal ZnO nanocrystals on the β-chitin substrate. Our chitin/ZnO composites presented in this work show antibacterial properties against Gram positive bacteria and can be employed for development of inorganic-organic wound dressing materials.
International Journal of Biological Macromolecules | 2012
Marzia Bo; Giorgio Bavestrello; Denis V. Kurek; Silvia Paasch; Eike Brunner; René Born; Roberta Galli; Allison L. Stelling; Viktor N. Sivkov; O. V. Petrova; D. V. Vyalikh; Kurt Kummer; S. L. Molodtsov; Dorota Nowak; Jakub Nowak; Hermann Ehrlich
Until now, there is a lack of knowledge about the presence of chitin in numerous representatives of corals (Cnidaria). However, investigations concerning the chitin-based skeletal organization in different coral taxa are significant from biochemical, structural, developmental, ecological and evolutionary points of view. In this paper, we present a thorough screening for the presence of chitin within the skeletal formations of a poorly investigated Mediterranean black coral, Parantipathes larix (Esper, 1792), as a typical representative of the Schizopathidae family. Using a wide array variety of techniques ((13)C solid state NMR, Fourier transform infrared (FTIR), Raman, NEXAFS, Morgan-Elson assay and Calcofluor White Staining), we unambiguously show for the first time that chitin is an important component within the skeletal stalks as well as pinnules of this coral.
Nano Research | 2015
Marcin Wysokowski; Mykhailo Motylenko; Jan Beyer; Anna A. Makarova; Hartmut Stöcker; Juliane Walter; Roberta Galli; Sabine Kaiser; D. V. Vyalikh; Vasilii V. Bazhenov; Iaroslav Petrenko; Allison L. Stelling; S. L. Molodtsov; Dawid Stawski; Krzysztof J. Kurzydłowski; Enrico Langer; Mikhail V. Tsurkan; Teofil Jesionowski; Johannes Heitmann; Dirk C. Meyer; Hermann Ehrlich
This work presents an extreme biomimetics route for the creation of nanostructured biocomposites utilizing a chitinous template of poriferan origin. The specific thermal stability of the nanostructured chitinous template allowed for the formation under hydrothermal conditions of a novel germanium oxide-chitin composite with a defined nanoscale structure. Using a variety of analytical techniques (FTIR, Raman, energy dispersive X-ray (EDX), near-edge X-ray absorption fine structure (NEXAFS), and photoluminescence (PL) spectroscopy, EDS-mapping, selected area for the electron diffraction pattern (SAEDP), and transmission electron microscopy (TEM)), we showed that this bioorganic scaffold induces the growth of GeO2 nanocrystals with a narrow (150–300 nm) size distribution and predominantly hexagonal phase, demonstrating the chitin template’s control over the crystal morphology. The formed GeO2–chitin composite showed several specific physical properties, such as a striking enhancement in photoluminescence exceeding values previously reported in GeO2-based biomaterials. These data demonstrate the potential of extreme biomimetics for developing new-generation nanostructured materials.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Hermann Ehrlich; Oksana V. Kaluzhnaya; Mikhail V. Tsurkan; Alexander V. Ereskovsky; Konstantin R. Tabachnick; Micha Ilan; Allison L. Stelling; Roberta Galli; O. V. Petrova; Serguei V. Nekipelov; Victor N. Sivkov; D. V. Vyalikh; René Born; Thomas Behm; Andre Ehrlich; Lubov I. Chernogor; S. I. Belikov; Dorte Janussen; Vasilii V. Bazhenov; Gert Wörheide
A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges’ holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan–Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.
Marine Drugs | 2015
Jakub Zdarta; Łukasz Klapiszewski; Marcin Wysokowski; Małgorzata Norman; Agnieszka Kołodziejczak-Radzimska; Dariusz Moszyński; Hermann Ehrlich; Hieronim Maciejewski; Allison L. Stelling; Teofil Jesionowski
Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors.
RSC Advances | 2014
Marcin Wysokowski; Mykhailo Motylenko; Juliane Walter; Grzegorz Lota; Jarosław Wojciechowski; Hartmut Stöcker; Roberta Galli; Allison L. Stelling; Cameliu Himcinschi; Elke Niederschlag; Enrico Langer; Vasilii V. Bazhenov; Tomasz Szatkowski; Jakub Zdarta; Iaroslav Pertenko; Zoran Kljajić; Tilmann Leisegang; S. L. Molodtsov; Dirk C. Meyer; Teofil Jesionowski; Hermann Ehrlich
Chitin of poriferan origin is a unique and thermostable biological material. It also represents an example of a renewable materials source due to the high regeneration ability of Aplysina sponges under marine ranching conditions. Chitinous scaffolds isolated from the skeleton of the marine sponge Aplysina aerophoba were used as a template for the in vitro formation of Fe2O3 under conditions (pH ∼ 1.5, 90 °C) which are extreme for biological materials. Novel chitin–Fe2O3 three dimensional composites, which have been prepared for the first time using hydrothermal synthesis, were thoroughly characterized using numerous analytical methods including Raman spectroscopy, XPS, XRD, electron diffraction and HR-TEM. We demonstrate the growth of uniform Fe2O3 nanocrystals into the nanostructured chitin substrate and propose a possible mechanism of chitin–hematite interactions. Moreover, we show that composites made of sponge chitin–Fe2O3 hybrid materials with active carbon can be successfully used as electrode materials for electrochemical capacitors.
RSC Advances | 2015
Tomasz Szatkowski; Marcin Wysokowski; Grzegorz Lota; Daria Pęziak; Vasili V. Bazhenov; Grzegorz Nowaczyk; Juliane Walter; S. L. Molodtsov; Hartmut Stöcker; Cameliu Himcinschi; Iaroslav Petrenko; Allison L. Stelling; Stefan Jurga; Teofil Jesionowski; Hermann Ehrlich
The marine sponge Hippospongia communis (Demospongiae: Porifera) is a representative of bath sponges, which possess characteristic mineral-free fibrous skeletons made of a structural protein – spongin. This fibrous skeleton is mechanically robust, resistant to acidic treatment, and thermally stable up to 160 °C. Due to these properties, we decided to use this biological material for the first time for the hydrothermal synthesis of hematite (α-Fe2O3) via catalyzed hydrolysis of FeCl3 to obtain a hematite–spongin composite. The material obtained was studied with Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HR-TEM), X-ray Photoemission Spectroscopy (XPS) and Raman spectroscopy. The α-Fe2O3–spongin-based composite was tested for its potential application as an anode material in a capacitor. The results indicate that components constructed using this novel composite material have a positive effect on the capacitance of energy storing devices.
PLOS ONE | 2013
Allison L. Stelling; Deirdre Toher; Ortrud Uckermann; Jelena Tavkin; Elke Leipnitz; Julia Schweizer; Holger Cramm; Gerald Steiner; Kathrin Geiger
In this work, the infrared (IR) spectra of living neural cells in suspension, native brain tissue, and native brain tumor tissue were investigated. Methods were developed to overcome the strong IR signal of liquid water so that the signal from the cellular biochemicals could be seen. Measurements could be performed during surgeries, within minutes after resection. Comparison between normal tissue, different cell lineages in suspension, and tumors allowed preliminary assignments of IR bands to be made. The most dramatic difference between tissues and cells was found to be in weaker IR absorbances usually assigned to the triple helix of collagens. Triple helix domains are common in larger structural proteins, and are typically found in the extracellular matrix (ECM) of tissues. An algorithm to correct offsets and calculate the band heights and positions of these bands was developed, so the variance between identical measurements could be assessed. The initial results indicate the triple helix signal is surprisingly consistent between different individuals, and is altered in tumor tissues. Taken together, these preliminary investigations indicate this triple helix signal may be a reliable biomarker for a tumor-like microenvironment. Thus, this signal has potential to aid in the intra-operational delineation of brain tumor borders.