Allison M. Land
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Allison M. Land.
Nature | 2013
Michael B. Burns; Lela Lackey; Michael A. Carpenter; Anurag Rathore; Allison M. Land; Brandon Leonard; Eric W. Refsland; Delshanee Kotandeniya; Natalia Tretyakova; Jason B. Nikas; Douglas Yee; Nuri A. Temiz; Duncan E. Donohue; Rebecca M. McDougle; William L. Brown; Emily K. Law; Reuben S. Harris
Several mutations are required for cancer development, and genome sequencing has revealed that many cancers, including breast cancer, have somatic mutation spectra dominated by C-to-T transitions. Most of these mutations occur at hydrolytically disfavoured non-methylated cytosines throughout the genome, and are sometimes clustered. Here we show that the DNA cytosine deaminase APOBEC3B is a probable source of these mutations. APOBEC3B messenger RNA is upregulated in most primary breast tumours and breast cancer cell lines. Tumours that express high levels of APOBEC3B have twice as many mutations as those that express low levels and are more likely to have mutations in TP53. Endogenous APOBEC3B protein is predominantly nuclear and the only detectable source of DNA C-to-U editing activity in breast cancer cell-line extracts. Knockdown experiments show that endogenous APOBEC3B correlates with increased levels of genomic uracil, increased mutation frequencies, and C-to-T transitions. Furthermore, induced APOBEC3B overexpression causes cell cycle deviations, cell death, DNA fragmentation, γ-H2AX accumulation and C-to-T mutations. Our data suggest a model in which APOBEC3B-catalysed deamination provides a chronic source of DNA damage in breast cancers that could select TP53 inactivation and explain how some tumours evolve rapidly and manifest heterogeneity.
Antimicrobial Agents and Chemotherapy | 2005
Michael R. Mulvey; Elizabeth Bryce; David Boyd; Marianna Ofner-Agostini; Allison M. Land; Andrew E. Simor; Shirley Paton
ABSTRACT A study designed to gain baseline information on strains of Escherichia coli displaying resistance to cefoxitin in Canada is described. A total of 29,323 E. coli isolates were screened at 12 participating hospital sites as part of an extended-spectrum beta-lactamase surveillance initiative. A total of 411 clinically significant, nonrepeat isolates displaying reduced susceptibilities to the NCCLS-recommended beta-lactams were submitted to a central laboratory over a 1-year period ending on 30 September 2000. Two hundred thirty-two isolates were identified as resistant to cefoxitin. All cefoxitin-resistant strains were subtyped by pulsed-field gel electrophoresis, and of these, 182 strains revealed a unique fingerprint and 1 strain was untypeable. PCR and sequence analysis of the ampC promoter region revealed 51 different promoter or attenuator variants and 14 wild-type promoters. Three promoter regions were interrupted by insertion elements, two contained IS10 elements, and one contained an IS911 variant. PCR and sequence analysis for the detection of acquired AmpC resistance (by the acquisition of ACT-1/MIR-1, CMY-2, or FOX) revealed that 25 strains contained CMY-2, including 7 of the strains found to have wild-type promoters. The considerable genetic variability in both the strain fingerprint and the promoter region suggests that AmpC-type resistance may emerge spontaneously by mutation of sensitive strains rather than by the spread of strains or plasmids in the hospital setting.
Journal of Virology | 2008
Allison M. Land; T. Blake Ball; Ma Luo; Richard Pilon; Paul Sandstrom; Joanne Embree; Charles Wachihi; Joshua Kimani; Francis A. Plummer
ABSTRACT APOBEC3G is an important innate immune molecule that causes human immunodeficiency virus type 1 (HIV-1) hypermutation, which can result in detrimental viral genome mutations. The Vif protein of wild-type HIV-1 counteracts APOBEC3G activity by targeting it for degradation and inhibiting its incorporation into viral particles. Additional APOBEC cytidine deaminases have been identified, such as APOBEC3F, which has a similar mode of action but different sequence specificity. A relationship between APOBEC3F/G and HIV disease progression has been proposed. During HIV-1 sequence analysis of the vpu/env region of 240 HIV-infected subjects from Nairobi, Kenya, 13 drastically hypermutated proviral sequences were identified. Sequences derived from plasma virus, however, lacked hypermutation, as did proviral vif. When correlates of disease progression were examined, subjects with hypermutated provirus were found to have significantly higher CD4 counts than the other subjects. Furthermore, hypermutation as estimated by elevated adenine content positively correlated with CD4 count for all 240 study subjects. The sequence context of the observed hypermutation was statistically associated with APOBEC3F/G activity. In contrast to previous studies, this study demonstrates that higher CD4 counts correlate with increased hypermutation in the absence of obvious mutations in the APOBEC inhibiting Vif protein. This strongly suggests that host factors, such as APOBEC3F/G, are playing a protective role in these patients, modulating viral hypermutation and host disease progression. These findings support the potential of targeting APOBEC3F/G for therapeutic purposes.
Journal of Biological Chemistry | 2012
Michael A. Carpenter; Ming Li; Anurag Rathore; Lela Lackey; Emily K. Law; Allison M. Land; Brandon Leonard; Shivender M.D. Shandilya; Markus Frederik Bohn; Celia A. Schiffer; William L. Brown; Reuben S. Harris
Background: APOBEC3A is a myeloid-specific interferon-inducible DNA C to U deaminase implicated in innate immunity. Results: APOBEC3A also elicits MeC to T editing activity in vitro with deoxy-oligonucleotides and in vivo with transfected plasmids. Conclusion: APOBEC3A accommodates both normal and larger DNA cytosine substrates. Significance: The developmental specialization and broader substrate range of APOBEC3A may be an evolutionary adaptation for physiological function in foreign DNA restriction. Multiple studies have indicated that the TET oxidases and, more controversially, the activation-induced cytidine deaminase/APOBEC deaminases have the capacity to convert genomic DNA 5-methylcytosine (MeC) into altered nucleobases that provoke excision repair and culminate in the replacement of the original MeC with a normal cytosine (C). We show that human APOBEC3A (A3A) efficiently deaminates both MeC to thymine (T) and normal C to uracil (U) in single-stranded DNA substrates. In comparison, the related enzyme APOBEC3G (A3G) has undetectable MeC to T activity and 10-fold less C to U activity. Upon 100-fold induction of endogenous A3A by interferon, the MeC status of bulk chromosomal DNA is unaltered, whereas both MeC and C nucleobases in transfected plasmid DNA substrates are highly susceptible to editing. Knockdown experiments show that endogenous A3A is the source of both of these cellular DNA deaminase activities. This is the first evidence for nonchromosomal DNA MeC to T editing in human cells. These biochemical and cellular data combine to suggest a model in which the expanded substrate versatility of A3A may be an evolutionary adaptation that occurred to fortify its innate immune function in foreign DNA clearance by myeloid lineage cell types.
Journal of Molecular Biology | 2012
Lela Lackey; Zachary L. Demorest; Allison M. Land; Judd F. Hultquist; William L. Brown; Reuben S. Harris
Members of the APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) protein family catalyze DNA cytosine deamination and underpin a variety of immune defenses. For instance, several family members, including APOBEC3B (A3B), elicit strong retrotransposon and retrovirus restriction activities. However, unlike the other proteins, A3B is the only family member with steady-state nuclear localization. Here, we show that A3B nuclear import is an active process requiring at least one amino acid (Val54) within an N-terminal motif analogous to the nuclear localization determinant of the antibody gene diversification enzyme AID (activation-induced cytosine deaminase). Mechanistic conservation with AID is further suggested by A3Bs capacity to interact with the same subset of importin proteins. Despite these mechanistic similarities, enforced A3B expression cannot substitute for AID-dependent antibody gene diversification by class switch recombination. Regulatory differences between A3B and AID are also visible during cell cycle progression. Our studies suggest that the present-day A3B enzyme retained the nuclear import mechanism of an ancestral AID protein during the expansion of the APOBEC3 locus in primates. Our studies also highlight the likelihood that, after nuclear import, specialized mechanisms exist to guide these enzymes to their respective physiological substrates and prevent gratuitous chromosomal DNA damage.
Journal of Biological Chemistry | 2013
Allison M. Land; Emily K. Law; Michael A. Carpenter; Lela Lackey; William L. Brown; Reuben S. Harris
Background: APOBEC3A is a potentially genotoxic DNA cytosine deaminase expressed in myeloid lineage cells. Results: Exogenous APOBEC3A genotoxicity correlates with expression level and nuclear localization. Endogenous APOBEC3A is nontoxic and cytoplasmic, despite its capacity to be highly induced by interferon. Conclusion: Cytoplasmic localization prevents endogenous APOBEC3A from accessing nuclear DNA. Significance: Endogenous APOBEC3A is not genotoxic. APOBEC3A (A3A) is a myeloid lineage-specific DNA cytosine deaminase with a role in innate immunity to foreign DNA. Previous studies have shown that heterologously expressed A3A is genotoxic, suggesting that monocytes may have a mechanism to regulate this enzyme. Indeed, we observed no significant cytotoxicity when interferon was used to induce the expression of endogenous A3A in CD14+-enriched primary cells or the monocytic cell line THP-1. In contrast, doxycycline-induced A3A in HEK293 cells caused major cytotoxicity at protein levels lower than those observed when CD14+ cells were stimulated with interferon. Immunofluorescent microscopy of interferon-stimulated CD14+ and THP-1 cells revealed that endogenous A3A is cytoplasmic, in stark contrast to stably or transiently transfected A3A, which has a cell-wide localization. A3A constructs engineered to be cytoplasmic are also nontoxic in HEK293 cells. These data combine to suggest that monocytic cells use a cytoplasmic retention mechanism to control A3A and avert genotoxicity during innate immune responses.
The Journal of Infectious Diseases | 2009
Julius Oyugi; Françoise C. M. Vouriot; Judie B. Alimonti; Stephen Wayne; Ma Luo; Allison M. Land; Zhujun Ao; Xiaojian Yao; Rafick Pierre Sekaly; Lawrence Elliott; J. Neil Simonsen; T. Blake Ball; Walter Jaoko; Joshua Kimani; Francis A. Plummer; Keith R. Fowke
BACKGROUND It has been predicted that CD4 C868T, a novel CD4 single-nucleotide polymorphism (SNP) that has been found to be highly prevalent among Africans, changes the tertiary structure of CD4, which may alter susceptibility to human immunodeficiency virus (HIV) infection. METHODS Participants were from a Kenyan cohort and included 87 uninfected and 277 HIV-1-infected individuals. DNA sequencing was used to determine CD4 genotype. A2.01 cells expressing similar levels of either wild-type CD4 or CD4-Trp240 as well as peripheral blood mononuclear cells from uninfected donors were infected with HIV-1(IIIB) or a Kenyan primary HIV-1 isolate. HIV-1 p24 enzyme-linked immunosorbent assay was used to determine the outcome of infection. RESULTS CD4 C868T was found to be significantly more prevalent among HIV-1-infected participants than among HIV-1-uninfected participants (P = .002), and C868T was associated with an increased incidence of HIV-1 infection as well (P = .005, log-rank test; P = .009, Wilcoxon test), with an odds ratio of 2.49 (P = .009). Both in vitro and ex vivo models demonstrated a significant association between CD4 C868T and susceptibility to HIV-1 infection (P < .001 and P = .003, respectively). CONCLUSION Overall, the present study found a strong correlation between CD4 C868T and increased susceptibility to HIV-1 infection. Given the high prevalence of both HIV infection and CD4 C868T in African populations, the effect of this SNP on the epidemic in Africa could be dramatic.
Cell Reports | 2015
Christopher M. Richards; John S. Albin; Özlem Demir; Nadine M. Shaban; Elizabeth M. Luengas; Allison M. Land; Brett D. Anderson; John R. Holten; John S. Anderson; Daniel A. Harki; Rommie E. Amaro; Reuben S. Harris
APOBEC3 family DNA cytosine deaminases provide overlapping defenses against pathogen infections. However, most viruses have elaborate evasion mechanisms such as the HIV-1 Vif protein, which subverts cellular CBF-β and a polyubiquitin ligase complex to neutralize these enzymes. Despite advances in APOBEC3 and Vif biology, a full understanding of this direct host-pathogen conflict has been elusive. We combine virus adaptation and computational studies to interrogate the APOBEC3F-Vif interface and build a robust structural model. A recurring compensatory amino acid substitution from adaptation experiments provided an initial docking constraint, and microsecond molecular dynamic simulations optimized interface contacts. Virus infectivity experiments validated a long-lasting electrostatic interaction between APOBEC3F E289 and HIV-1 Vif R15. Taken together with mutagenesis results, we propose a wobble model to explain how HIV-1 Vif has evolved to bind different APOBEC3 enzymes and, more generally, how pathogens may evolve to escape innate host defenses.
AIDS Research and Human Retroviruses | 2008
Allison M. Land; Ma Luo; Richard Pilon; Paul Sandstrom; Joanne Embree; Charles Wachihi; Joshua Kimani; Francis A. Plummer; T. Blake Ball
HIV-1, a highly diverse infectious agent, shows the greatest sequence diversity in highly exposed individuals, including greater levels of recombination. HIV-1 diversity in Nairobi, Kenya was examined in 240 individuals, including both those with high and low exposure to HIV. Sequence analysis of a 590 nucleotide proviral region encompassing vpu and part of env revealed that most viruses were clade A1 (70%), while both clade D (9%) and clade C (6%) virus were also observed, as was recombinant virus (15%). Participation in sex work was significantly associated with clade: these subjects had a lower likelihood of infection with clade C virus and a higher likelihood of infection with a recombinant isolate (p = 0.038). Interestingly, most of the recombinants formed distinct groups based on shared recombination breakpoints between common clades (n = 33/37). This study shows the value of continued HIV sequence analysis to examine and monitor viral genetic variability.
Journal of Virology | 2014
Allison M. Land; Nadine M. Shaban; Leah Evans; Judd F. Hultquist; John S. Albin; Reuben S. Harris
ABSTRACT HIV-1 Vif counteracts restrictive APOBEC3 proteins by targeting them for proteasomal degradation. To determine the regions mediating sensitivity to Vif, we compared human APOBEC3F, which is HIV-1 Vif sensitive, with rhesus APOBEC3F, which is HIV-1 Vif resistant. Rhesus-human APOBEC3F chimeras and amino acid substitution mutants were tested for sensitivity to HIV-1 Vif. This approach identified the α3 and α4 helices of human APOBEC3F as important determinants of the interaction with HIV-1 Vif.