Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allison P. Patton is active.

Publication


Featured researches published by Allison P. Patton.


Environmental Science & Technology | 2014

An hourly regression model for ultrafine particles in a near-highway urban area.

Allison P. Patton; Caitlin Collins; Elena N. Naumova; Wig Zamore; Doug Brugge; John L. Durant

Estimating ultrafine particle number concentrations (PNC) near highways for exposure assessment in chronic health studies requires models capable of capturing PNC spatial and temporal variations over the course of a full year. The objectives of this work were to describe the relationship between near-highway PNC and potential predictors, and to build and validate hourly log-linear regression models. PNC was measured near Interstate 93 (I-93) in Somerville, MA using a mobile monitoring platform driven for 234 h on 43 days between August 2009 and September 2010. Compared to urban background, PNC levels were consistently elevated within 100-200 m of I-93, with gradients impacted by meteorological and traffic conditions. Temporal and spatial variables including wind speed and direction, temperature, highway traffic, and distance to I-93 and major roads contributed significantly to the full regression model. Cross-validated model R(2) values ranged from 0.38 to 0.47, with higher values achieved (0.43 to 0.53) when short-duration PNC spikes were removed. The model predicts highest PNC near major roads and on cold days with low wind speeds. The model allows estimation of hourly ambient PNC at 20-m resolution in a near-highway neighborhood.


Environmental Science & Technology | 2015

Transferability and generalizability of regression models of ultrafine particles in urban neighborhoods in the Boston area.

Allison P. Patton; Wig Zamore; Elena N. Naumova; Jonathan I. Levy; Doug Brugge; John L. Durant

Land use regression (LUR) models have been used to assess air pollutant exposure, but limited evidence exists on whether location-specific LUR models are applicable to other locations (transferability) or general models are applicable to smaller areas (generalizability). We tested transferability and generalizability of spatial-temporal LUR models of hourly particle number concentration (PNC) for Boston-area (MA, U.S.A.) urban neighborhoods near Interstate 93. Four neighborhood-specific regression models and one Boston-area model were developed from mobile monitoring measurements (34–46 days/neighborhood over one year each). Transferability was tested by applying each neighborhood-specific model to the other neighborhoods; generalizability was tested by applying the Boston-area model to each neighborhood. Both the transferability and generalizability of models were tested with and without neighborhood-specific calibration. Important PNC predictors (adjusted-R2 = 0.24–0.43) included wind speed and direction, temperature, highway traffic volume, and distance from the highway edge. Direct model transferability was poor (R2 < 0.17). Locally-calibrated transferred models (R2 = 0.19–0.40) and the Boston-area model (adjusted-R2 = 0.26, range: 0.13–0.30) performed similarly to neighborhood-specific models; however, some coefficients of locally calibrated transferred models were uninterpretable. Our results show that transferability of neighborhood-specific LUR models of hourly PNC was limited, but that a general model performed acceptably in multiple areas when calibrated with local data.


Reviews on environmental health | 2013

A community participatory study of cardiovascular health and exposure to near-highway air pollution: study design and methods

Christina H. Fuller; Allison P. Patton; Kevin Lane; M. Barton Laws; Aaron Marden; Edna Carrasco; John D. Spengler; Mkaya Mwamburi; Wig Zamore; John L. Durant; Doug Brugge

Abstract Current literature is insufficient to make causal inferences or establish dose-response relationships for traffic-related ultrafine particles (UFPs) and cardiovascular (CV) health. The Community Assessment of Freeway Exposure and Health (CAFEH) is a cross-sectional study of the relationship between UFP and biomarkers of CV risk. CAFEH uses a community-based participatory research framework that partners university researchers with community groups and residents. Our central hypothesis is that chronic exposure to UFP is associated with changes in biomarkers. The study enrolled more than 700 residents from three near-highway neighborhoods in the Boston metropolitan area in Massachusetts, USA. All participants completed an in-home questionnaire and a subset (440+) completed an additional supplemental questionnaire and provided biomarkers. Air pollution monitoring was conducted by a mobile laboratory equipped with fast-response instruments, at fixed sites, and inside the homes of selected study participants. We seek to develop improved estimates of UFP exposure by combining spatiotemporal models of ambient UFP with data on participant time-activity and housing characteristics. Exposure estimates will then be compared with biomarker levels to ascertain associations. This article describes our study design and methods and presents preliminary findings from east Somerville, one of the three study communities.


Environment International | 2016

Association of modeled long-term personal exposure to ultrafine particles with inflammatory and coagulation biomarkers.

Kevin Lane; Jonathan I. Levy; Madeleine K. Scammell; Junenette L. Peters; Allison P. Patton; Ellin Reisner; Lydia Lowe; Wig Zamore; John L. Durant; Doug Brugge

BACKGROUND Long-term exposure to fine particulate matter has been linked to cardiovascular disease and systemic inflammatory responses; however, evidence is limited regarding the effects of long-term exposure to ultrafine particulate matter (UFP, <100nm). We used a cross-sectional study design to examine the association of long-term exposure to near-highway UFP with measures of systemic inflammation and coagulation. METHODS We analyzed blood samples from 408 individuals aged 40-91years living in three near-highway and three urban background areas in and near Boston, Massachusetts. We conducted mobile monitoring of particle number concentration (PNC) in each area, and used the data to develop and validate highly resolved spatiotemporal (hourly, 20m) PNC regression models. These models were linked with participant time-activity data to determine individual time-activity adjusted (TAA) annual average PNC exposures. Multivariable regression modeling and stratification were used to assess the association between TAA-PNC and single peripheral blood measures of high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), tumor-necrosis factor alpha receptor II (TNFRII) and fibrinogen. RESULTS After adjusting for age, sex, education, body mass index, smoking and race/ethnicity, an interquartile-range (10,000particles/cm(3)) increase in TAA-PNC had a positive non-significant association with a 14.0% (95% CI: -4.6%, 36.2%) positive difference in hsCRP, an 8.9% (95% CI: -0.4%, 10.9%) positive difference in IL-6, and a 5.1% (95% CI: -0.4%, 10.9%) positive difference in TNFRII. Stratification by race/ethnicity revealed that TAA-PNC had larger effect estimates for all three inflammatory markers and was significantly associated with hsCRP and TNFRII in white non-Hispanic, but not East Asian participants. Fibrinogen had a negative non-significant association with TAA-PNC. CONCLUSIONS Our findings suggest an association between annual average near-highway TAA-PNC and subclinical inflammatory markers of CVD risk.


Journal of Exposure Science and Environmental Epidemiology | 2015

Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles

Kevin Lane; Jonathan I. Levy; Madeleine K. Scammell; Allison P. Patton; John L. Durant; Mkaya Mwamburi; Wig Zamore; Doug Brugge

Exposures to ultrafine particles (<100 nm, estimated as particle number concentration, PNC) differ from ambient concentrations because of the spatial and temporal variability of both PNC and people. Our goal was to evaluate the influence of time-activity adjustment on exposure assignment and associations with blood biomarkers for a near-highway population. A regression model based on mobile monitoring and spatial and temporal variables was used to generate hourly ambient residential PNC for a full year for a subset of participants (n=140) in the Community Assessment of Freeway Exposure and Health study. We modified the ambient estimates for each hour using personal estimates of hourly time spent in five micro-environments (inside home, outside home, at work, commuting, other) as well as particle infiltration. Time-activity adjusted (TAA)-PNC values differed from residential ambient annual average (RAA)-PNC, with lower exposures predicted for participants who spent more time away from home. Employment status and distance to highway had a differential effect on TAA-PNC. We found associations of RAA-PNC with high sensitivity C-reactive protein and Interleukin-6, although exposure-response functions were non-monotonic. TAA-PNC associations had larger effect estimates and linear exposure-response functions. Our findings suggest that time-activity adjustment improves exposure assessment for air pollutants that vary greatly in space and time.


Annals of Epidemiology | 2015

Response of biomarkers of inflammation and coagulation to short-term changes in central site, local, and predicted particle number concentrations

Christina H. Fuller; Paige L. Williams; Murray A. Mittleman; Allison P. Patton; John D. Spengler; Doug Brugge

PURPOSE Previous studies have reported acute (hours-28 days) associations between ambient ultrafine particles (UFP; diameter <0.1) and biomarkers of cardiovascular health using central site data. We evaluated particle number concentration (a proxy measure for UFP) measured at a central site, a local near-highway site and predicted residential concentrations with response of biomarkers of inflammation and coagulation in a near-highway population. METHODS Participants provided two blood samples for analysis of interleukin-6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α receptor II, and fibrinogen. Mixed effect models were used to evaluate the association between PNC levels on the same day, prior 2 days, and moving averages of 3 to 28 days. RESULTS Estimated effects on biomarkers of a 5000 unit increase in central site PNC generally increased with longer averaging times for IL-6, hs-CRP, and fibrinogen. Effect estimates were highest for a 28-day moving average, with 91% (95% confidence interval [CI]: 9, 230) higher IL-6 levels, 74% (95% CI: -7, 220) higher hs-CRP levels, and 59% (95% CI: -13, 130) higher fibrinogen levels. We observed no clear trend between near-highway or predicted residential PNC and any of the biomarkers. CONCLUSIONS Only central site PNC increased blood markers of inflammation while near-highway and predicted residential values did not. We cannot fully explain this result, although differing PNC composition is a possibility. Future studies would assist in understanding these findings.


Journal of The Air & Waste Management Association | 2016

Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building

Zuocheng Wang; Leonardo Calderon; Allison P. Patton; Mary Ann Sorensen Allacci; Jennifer A. Senick; Richard Wener; Clinton J. Andrews; Gediminas Mainelis

ABSTRACT This study used several real-time and filter-based aerosol instruments to measure PM2.5 levels in a high-rise residential green building in the Northeastern US and compared performance of those instruments. PM2.5 24-hr average concentrations were determined using a Personal Modular Impactor (PMI) with 2.5 µm cut (SKC Inc., Eighty Four, PA) and a direct reading pDR-1500 (Thermo Scientific, Franklin, MA) as well as its filter. 1-hr average PM2.5 concentrations were measured in the same apartments with an Aerotrak Optical Particle Counter (OPC) (model 8220, TSI, Inc., Shoreview, MN) and a DustTrak DRX mass monitor (model 8534, TSI, Inc., Shoreview, MN). OPC and DRX measurements were compared with concurrent 1-hr mass concentration from the pDR-1500. The pDR-1500 direct reading showed approximately 40% higher particle mass concentration compared to its own filter (n = 41), and 25% higher PM2.5 mass concentration compared to the PMI2.5 filter. The pDR-1500 direct reading and PMI2.5 in non-smoking homes (self-reported) were not significantly different (n = 10, R2 = 0.937), while the difference between measurements for smoking homes was 44% (n = 31, R2 = 0.773). Both OPC and DRX data had substantial and significant systematic and proportional biases compared with pDR-1500 readings. However, these methods were highly correlated: R2 = 0.936 for OPC versus pDR-1500 reading and R2 = 0.863 for DRX versus pDR-1500 reading. The data suggest that accuracy of aerosol mass concentrations from direct-reading instruments in indoor environments depends on the instrument, and that correction factors can be used to reduce biases of these real-time monitors in residential green buildings with similar aerosol properties. Implications: This study used several real-time and filter-based aerosol instruments to measure PM2.5 levels in a high-rise residential green building in the northeastern United States and compared performance of those instruments. The data show that while the use of real-time monitors is convenient for measurement of airborne PM at short time scales, the accuracy of those monitors depends on a particular instrument. Bias correction factors identified in this paper could provide guidance for other studies using direct-reading instruments to measure PM concentrations.


Journal of Occupational and Environmental Hygiene | 2015

Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions

Chang Ho Yu; Allison P. Patton; Andrew Zhang; Zhi-Hua (Tina) Fan; Clifford P. Weisel; Paul J. Lioy

Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80°F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 μg/m3) in a controlled exposure facility. The 2-hr averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2 = 0.84; slope = 1.17±0.06; N = 27) and reported ∼17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hr averaged EC concentrations obtained by the Airtec instrument vs. the NIOSH method (p < 0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5% from relative humidity and temperature on real-time measurements. The overall deviations of these real-time monitors from the NIOSH method results were ≤20%. However, simultaneous monitoring of temperature and relative humidity is recommended in field investigations to understand and correct for environmental impacts on real-time monitoring data.


International Journal of Environmental Research and Public Health | 2017

Association of Long-Term Near-Highway Exposure to Ultrafine Particles with Cardiovascular Diseases, Diabetes and Hypertension

Yu Li; Kevin Lane; Laura Corlin; Allison P. Patton; John L. Durant; Mohan Thanikachalam; Mark Woodin; Molin Wang; Doug Brugge

Ultrafine particle (UFP) concentrations are elevated near busy roadways, however, their effects on prevalence of cardiovascular diseases, diabetes, and hypertension are not well understood. To investigate these associations, data on demographics, diseases, medication use, and time of activities were collected by in-home surveys for 704 participants in three pairs of near-highway and urban background neighborhoods in and near Boston (MA, USA). Body mass index (BMI) was measured for a subset of 435 participants. Particle number concentration (PNC, a measure of UFP) was collected by mobile monitoring in each area. Intra-neighborhood spatial-temporal regression models (approximately 20 m resolution) were used to estimate hourly ambient PNC at the residences of participants. We used participant time activity information to adjust annual average residential PNC values and assign individualized time activity adjusted annual average PNC exposures (TAA-PNC). Using multivariate logistic regression models, we found an odds ratio (OR) of 1.35 (95% CI: 0.83, 2.22) of TAA-PNC with stroke and ischemic heart diseases (S/IHD), an OR of 1.14 (95% CI: 0.81, 1.62) with hypertension, and an OR of 0.71 (95% CI: 0.46, 1.10) for diabetes. A subset analysis controlling for BMI produced slightly stronger associations for S/IHD (OR = 1.61, 95% CI: 0.88, 2.92) and hypertension (OR = 1.28, 95% CI: 0.81, 2.02), and no association with diabetes (OR = 1.09, 95% CI = 0.61, 1.96). Further research is needed with larger sample sizes and longitudinal follow-up.


Environmental Science & Technology | 2017

Assessing the Suitability of Multiple Dispersion and Land Use Regression Models for Urban Traffic-Related Ultrafine Particles

Allison P. Patton; Chad Milando; John L. Durant; Prashant Kumar

Comparative evaluations are needed to assess the suitability of near-road air pollution models for traffic-related ultrafine particle number concentration (PNC). Our goal was to evaluate the ability of dispersion (CALINE4, AERMOD, R-LINE, and QUIC) and regression models to predict PNC in a residential neighborhood (Somerville) and an urban center (Chinatown) near highways in and near Boston, Massachusetts. PNC was measured in each area, and models were compared to each other and measurements for hot (>18 °C) and cold (<10 °C) hours with wind directions parallel to and perpendicular downwind from highways. In Somerville, correlation and error statistics were typically acceptable, and all models predicted concentration gradients extending ∼100 m from the highway. In contrast, in Chinatown, PNC trends differed among models, and predictions were poorly correlated with measurements likely due to effects of street canyons and nonhighway particle sources. Our results demonstrate the importance of selecting PNC models that align with study area characteristics (e.g., dominant sources and building geometry). We applied widely available models to typical urban study areas; therefore, our results should be generalizable to models of hourly averaged PNC in similar urban areas.

Collaboration


Dive into the Allison P. Patton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge