Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allison S. Arnold is active.

Publication


Featured researches published by Allison S. Arnold.


IEEE Transactions on Biomedical Engineering | 2007

OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement

Scott L. Delp; Frank C. Anderson; Allison S. Arnold; Peter Loan; Ayman Habib; Chand T. John; Eran Guendelman; Darryl G. Thelen

Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.


Journal of Biomechanics | 2008

Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait.

Jennifer L. Hicks; Michael H. Schwartz; Allison S. Arnold; Scott L. Delp

Many children with cerebral palsy walk in a crouch gait that progressively worsens over time, decreasing walking efficiency and leading to joint degeneration. This study examined the effect of crouched postures on the capacity of muscles to extend the hip and knee joints and the joint flexions induced by gravity during the single-limb stance phase of gait. We first characterized representative mild, moderate, and severe crouch gait kinematics based on a large group of subjects with cerebral palsy (N=316). We then used a three-dimensional model of the musculoskeletal system and its associated equations of motion to determine the effect of these crouched gait postures on (1) the capacity of individual muscles to extend the hip and knee joints, which we defined as the angular accelerations of the joints, towards extension, that resulted from applying a 1N muscle force to the model, and (2) the angular acceleration of the joints induced by gravity. Our analysis showed that the capacities of almost all the major hip and knee extensors were markedly reduced in a crouched gait posture, with the exception of the hamstrings muscle group, whose extension capacity was maintained in a crouched posture. Crouch gait also increased the flexion accelerations induced by gravity at the hip and knee throughout single-limb stance. These findings help explain the increased energy requirements and progressive nature of crouch gait in patients with cerebral palsy.


Physical Therapy | 2010

Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy.

Diane L. Damiano; Allison S. Arnold; Katherine M. Steele; Scott L. Delp

Background Computer simulations have demonstrated that excessive hip and knee flexion during gait, as frequently seen in ambulatory children with cerebral palsy (CP), can reduce the ability of muscles to provide antigravity support and increase the tendency of hip muscles to internally rotate the thigh. These findings suggest that therapies for improving upright posture during gait also may reduce excessive internal rotation. Objective The goal of this study was to determine whether strength training can diminish the degree of crouched, internally rotated gait in children with spastic diplegic CP. Design This was a pilot prospective clinical trial. Methods Eight children with CP participated in an 8-week progressive resistance exercise program, with 3-dimensional gait analysis and isokinetic testing performed before and after the program. Secondary measures included passive range of motion, the Ashworth Scale, and the PedsQL CP Module. To identify factors that may have influenced outcome, individual and subgroup data were examined for patterns of change within and across variables. Results Strength (force-generating capacity) increased significantly in the left hip extensors, with smaller, nonsignificant mean increases in the other 3 extensor muscle groups, yet kinematic and functional outcomes were inconsistent. The first reported subject-specific computer simulations of crouch gait were created for one child who showed substantial benefit to examine the factors that may have contributed to this outcome. Limitations The sample was small, with wide variability in outcomes. Conclusions Strength training may improve walking function and alignment in some patients for whom weakness is a major contributor to their gait deficits. However, in other patients, it may produce no change or even undesired outcomes. Given the variability of outcomes in this and other strengthening studies in CP, analytical approaches to determine the sources of variability are needed to better identify those individuals who are most likely to benefit from strengthening.


Gait & Posture | 2000

Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy

Allison S. Arnold; Deanna J. Asakawa; Scott L. Delp

Children with cerebral palsy frequently walk with excessive internal rotation of the hip. Spastic medial hamstrings or adductors are presumed to contribute to the excessive internal rotation in some patients; however, the capacity of these muscles to produce internal rotation during walking in individuals with cerebral palsy has not been adequately investigated. The purpose of this study was to determine the hip rotation moment arms of the medial hamstrings and adductors in persons who walk with a crouched, internally-rotated gait. Highly accurate computer models of three subjects with cerebral palsy were created from magnetic resonance images. These subject-specific models were used in conjunction with joint kinematics obtained from gait analysis to calculate the rotational moment arms of the muscles at body positions corresponding to each subjects internally-rotated gait. Analysis of the models revealed that the medial hamstrings, adductor brevis, and gracilis had negligible or external rotation moment arms throughout the gait cycle in all three subjects. The adductor longus had an internal rotation moment arm in two of the subjects, but the moment arm was small (<4 mm) in each case. These findings indicate that neither the medial hamstrings nor the adductor brevis, adductor longus, or gracilis are likely to be important contributors to excessive internal rotation of the hip. This suggests that these muscles should not be lengthened to treat excessive internal rotation of the hip and that other factors are more likely to cause internally-rotated gait in these patients.


Journal of Biomechanics | 2008

Importance of preswing rectus femoris activity in stiff-knee gait.

Jeffrey A. Reinbolt; Melanie D. Fox; Allison S. Arnold; Sylvia Õunpuu; Scott L. Delp

Stiff-knee gait is characterized by diminished and delayed knee flexion during swing. Rectus femoris transfer surgery, a common treatment for stiff-knee gait, is often recommended when a patient exhibits prolonged activity of the rectus femoris muscle during swing. Treatment outcomes are inconsistent, in part, due to limited understanding of the biomechanical factors contributing to stiff-knee gait. This study used a combination of gait analysis and dynamic simulation to examine how activity of the rectus femoris during swing, and prior to swing, contribute to knee flexion. A group of muscle-actuated dynamic simulations was created that accurately reproduced the gait dynamics of ten subjects with stiff-knee gait. These simulations were used to examine the effects of rectus femoris activity on knee motion by eliminating rectus femoris activity during preswing and separately during early swing. The increase in peak knee flexion by eliminating rectus femoris activity during preswing (7.5+/-3.1 degrees ) was significantly greater on average (paired t-test, p=0.035) than during early swing (4.7+/-3.6 degrees ). These results suggest that preswing rectus femoris activity is at least as influential as early swing activity in limiting the knee flexion of persons with stiff-knee gait. In evaluating rectus femoris activity for treatment of stiff-knee gait, preswing as well as early swing activity should be examined.


Theoretical Issues in Ergonomics Science | 2005

Computer modeling of gait abnormalities in cerebral palsy: application to treatment planning

Allison S. Arnold; Scott L. Delp

The treatment of gait abnormalities in persons with cerebral palsy is challenging. Theoretically, gait abnormalities can be diminished by decreasing the muscle forces that disrupt normal movement (e.g. via muscle–tendon lengthenings or tone-altering medications) and/or increasing the muscle and ground reaction forces that have the potential to improve movement (e.g. via strengthening exercises, orthoses, or derotational osteotomies). However, different patients exhibit varying degrees of neurologic impairment, spasticity, weakness, and bone deformity, suggesting that gait deviations arise from a variety of sources, each of which requires a different treatment. Treatment planning is further complicated because there is currently no scientific basis for determining how patients’ neuromusculoskeletal impairments contribute to abnormal movement. This paper describes how biomechanical models can be used, in combination with experimental data, to enhance our understanding of gait abnormalities and to provide a theoretical basis for planning treatments. Two examples are presented, and suggestions for future work are discussed.


Journal of Biomechanics | 1994

Assessment of a method to estimate muscle attachments from surface landmarks: A 3D computer graphics approach

Thomas M. Kepple; Allison S. Arnold; Steven J. Stanhope; K. Lohmann Siegel

A method for estimating the locations of muscle origins and insertions from the measurement of surface landmarks was evaluated using two indirect accuracy tests and a three-dimensional computer graphics program. For each of four lower extremity anatomical segments, a least-squares technique was used to map the measured locations of three landmark targets to their anatomically based locations. The residual errors, obtained from the applications of the least squares, supplied the first indirect accuracy test. These residual errors were between 6 and 12 mm for the four anatomical segments when averaged over ten subjects. The second indirect accuracy test was conducted by comparing the predicted locations of end points on two adjacent segments forming a joint. Errors in aligning adjacent end points were between 12 and 29 mm for three anatomical joints when averaged over ten subjects. A three-dimensional computer graphics program was developed by the authors and demonstrated that the static testing techniques alone were insufficient to evaluate the quality of the muscle origin and insertion estimates. Any evaluation of muscle lengths, velocities and lines-of-action from surface landmarks should examine the estimates made from motion data, and should address both the ability of the model to fit the subjects as well as models ability to represent the geometry of the musculoskeletal system.


Annals of Biomedical Engineering | 2012

A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers

James M. Wakeling; Sabrina S.M. Lee; Allison S. Arnold; Maria de Boef Miara; Andrew A. Biewener

Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle.


Journal of Electromyography and Kinesiology | 2011

EMG analysis tuned for determining the timing and level of activation in different motor units

Sabrina S.M. Lee; Maria de Boef Miara; Allison S. Arnold; Andrew A. Biewener; James M. Wakeling

Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG.


Integrative and Comparative Biology | 2014

Validation of Hill-Type Muscle Models in Relation to Neuromuscular Recruitment and Force–Velocity Properties: Predicting Patterns of In Vivo Muscle Force

Andrew A. Biewener; James M. Wakeling; Sabrina S.M. Lee; Allison S. Arnold

We review here the use and reliability of Hill-type muscle models to predict muscle performance under varying conditions, ranging from in situ production of isometric force to in vivo dynamics of muscle length change and force in response to activation. Muscle models are frequently used in musculoskeletal simulations of movement, particularly when applied to studies of human motor performance in which surgically implanted transducers have limited use. Musculoskeletal simulations of different animal species also are being developed to evaluate comparative and evolutionary aspects of locomotor performance. However, such models are rarely validated against direct measures of fascicle strain or recordings of muscle-tendon force. Historically, Hill-type models simplify properties of whole muscle by scaling salient properties of single fibers to whole muscles, typically accounting for a muscles architecture and series elasticity. Activation of the models single contractile element (assigned the properties of homogenous fibers) is also simplified and is often based on temporal features of myoelectric (EMG) activation recorded from the muscle. Comparison of standard one-element models with a novel two-element model and with in situ and in vivo measures of EMG, fascicle strain, and force recorded from the gastrocnemius muscles of goats shows that a two-element Hill-type model, which allows independent recruitment of slow and fast units, better predicts temporal patterns of in situ and in vivo force. Recruitment patterns of slow/fast units based on wavelet decomposition of EMG activity in frequency-time space are generally correlated with the intensity spectra of the EMG signals, the strain rates of the fascicles, and the muscle-tendon forces measured in vivo, with faster units linked to greater strain rates and to more rapid forces. Using direct measures of muscle performance to further test Hill-type models, whether traditional or more complex, remains critical for establishing their accuracy and essential for verifying their applicability to scientific and clinical studies of musculoskeletal function.

Collaboration


Dive into the Allison S. Arnold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darryl G. Thelen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilse Jonkers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge