Allyson Ianuzzi
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Allyson Ianuzzi.
Journal of Neurophysiology | 2009
Dong-Yuan Cao; Joel G. Pickar; Weiginq Ge; Allyson Ianuzzi; Partap S. Khalsa
Muscle spindles contribute to sensorimotor control by supplying feedback regarding muscle length and consequently information about joint position. While substantial study has been devoted to determining the position sensitivity of spindles in limb muscles, there appears to be no data on their sensitivity in the low back. We determined the relationship between lumbar paraspinal muscle spindle discharge and paraspinal muscle lengthening estimated from controlled cranialward movement of the L(6) vertebra in anesthetized cats. Ramp (0.4 mm/s) and hold displacements (0.2, 0.4, 0.6, 0.8, and 1.2 mm for 2.5 s) were applied at the L(6) spinous process. Position sensitivity was defined as the slope of the relationship between the estimated increase in muscle length and mean instantaneous frequency at each length. To enable comparisons with appendicular muscle spindles where joint angle was measured, we also calculated sensitivity in terms of the L(6) and L(7) intervertebral flexion angle (IVA). This angle was estimated from measurements of facet joint capsule strain (FJC) based on a previously established relationship between IVA and FJC strain in the cat lumbar vertebral column during lumbar flexion. Single-unit recordings were obtained from 12 muscle spindle afferents. Longissimus and multifidus muscles contained the receptive field of 10 and 2 afferents, respectively. Mean position sensitivity was 16.3 imp.s(-1).mm(-1) [10.6-22.1, 95% confidence interval (CI), P < 0.001]. Mean angular sensitivity was 5.2 imp.s(-1). degrees (-1) (2.6-8.0, P < 0.003). These slope estimates were more than 3.5 times greater compared with appendicular muscle spindles, and their CIs did not contain previous slope estimates for the sensitivity of appendicular spindles from the literature. Potential reasons for and the significance of the apparently high position sensitivity in the lumbar spine are discussed.
Journal of Manipulative and Physiological Therapeutics | 2011
Allyson Ianuzzi; Joel G. Pickar; Partap S. Khalsa
OBJECTIVE The lumbar facet joint capsule (FJC) is innervated with mechanically sensitive neurons and is thought to contribute to proprioception and pain. Biomechanical investigations of the FJC have commonly used human cadaveric spines, whereas combined biomechanical and neurophysiological studies have typically used nonhuman animal models. The purpose of this study was to develop mathematical relationships describing vertebral kinematics and FJC strain in cat and human lumbar spine specimens during physiological spinal motions to facilitate future efforts at understanding the mechanosensory role of the FJC. METHODS Cat lumbar spine specimens were tested during extension, flexion, and lateral bending. Joint kinematics and FJC principal strain were measured optically. Facet joint capsule strain-intervertebral angle (IVA) regression relationships were established for the 3 most caudal lumbar joints using cat (current study) and human (prior study) data. The FJC strain-IVA relationships were used to estimate cat and human spine kinematics that corresponded to published sensory neuron response thresholds (5% and 10% strain) for low-threshold mechanoreceptors. RESULTS Significant linear relationships between IVA and strain were observed for both human and cat during motions that produced tension in the FJCs (P < .01). During motions that produced tension in the FJCs, the models predicted that FJC strain magnitudes corresponding to published sensory neuron response thresholds would be produced by IVA magnitudes within the physiological range of lumbar motion. CONCLUSIONS Data from the current study support the proprioceptive role of lumbar spine FJC and low-threshold mechanoreceptive afferents and can be used in interpreting combined neurophysiological and biomechanical studies of cat lumbar spines.
Journal of Biomechanical Engineering-transactions of The Asme | 2010
Allyson Ianuzzi; Joel G. Pickar; Partap S. Khalsa
High-velocity, low-amplitude spinal manipulation (HVLA-SM) is an efficacious treatment for low back pain, although the physiological mechanisms underlying its effects remain elusive. The lumbar facet joint capsule (FJC) is innervated with mechanically sensitive neurons and it has been theorized that the neurophysiological benefits of HVLA-SM are partially induced by stimulation of FJC neurons. Biomechanical aspects of this theory have been investigated in humans while neurophysiological aspects have been investigated using cat models. The purpose of this study was to determine the relationship between human and cat lumbar spines during HVLA-SM. Cat lumbar spine specimens were mechanically tested, using a displacement-controlled apparatus, during simulated HVLA-SM applied at L5, L6, and L7 that produced preload forces of approximately 25% bodyweight for 0.5 s and peak forces that rose to 50-100% bodyweight within approximately 125 ms, similar to that delivered clinically. Joint kinematics and FJC strain were measured optically. Human FJC strain and kinematics data were taken from a prior study. Regression models were established for FJC strain magnitudes as functions of factors species, manipulation site, and interactions thereof. During simulated HVLA-SM, joint kinematics in cat spines were greater in magnitude compared with humans. Similar to human spines, site-specific HVLA-SM produced regional cat FJC strains at distant motion segments. Joint motions and FJC strain magnitudes for cat spines were larger than those for human spine specimens. Regression relationships demonstrated that species, HVLA-SM site, and interactions thereof were significantly and moderately well correlated for HVLA-SM that generated tensile strain in the FJC. The relationships established in the current study can be used in future neurophysiological studies conducted in cats to extrapolate how human FJC afferents might respond to HVLA-SM. The data from the current study warrant further investigation into the clinical relevance of site targeted HVLA-SM.
The Spine Journal | 2004
Allyson Ianuzzi; Jesse S. Little; Jonathan B. Chiu; Avi Baitner; Greg Kawchuk; Partap S. Khalsa
The Spine Journal | 2005
Allyson Ianuzzi; Partap S. Khalsa
The Spine Journal | 2004
Jesse S. Little; Allyson Ianuzzi; Jonathan B. Chiu; Avi Baitner; Partap S. Khalsa
Journal of Manipulative and Physiological Therapeutics | 2005
Allyson Ianuzzi; Partap S. Khalsa
The Spine Journal | 2006
Allyson Ianuzzi; Isidoro Zambrano; Jigar Tataria; Azeema Ameerally; Marc Agulnick; Jesse S. Little Goodwin; Mark Stephen; Partap S. Khalsa
The Spine Journal | 2009
Allyson Ianuzzi; Joel G. Pickar; Partap S. Khalsa
Arthroscopy | 2008
James Penna; David Deramo; Cory O. Nelson; Michael J. Sileo; Scott M. Levin; Bryan Tompkins; Allyson Ianuzzi