Alma D. True
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alma D. True.
Poultry Science | 2014
Rebecca M. Delles; Youling L. Xiong; Alma D. True; Touying Ao; Karl A. Dawson
Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P < 0.05) with an antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P < 0.05) in antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity.
Journal of Food Science | 2013
Jiang Jiang; Xin Zhang; Alma D. True; Lirong Zhou; Youling L. Xiong
This study investigated the efficacy of licorice extract (LE) to curtail lipid oxidation and protect sensory attributes of ground pork during refrigerated and frozen storage. Pork patties (20% fat) were formulated with 0%, 0.02%, 0.05%, and 0.1% (meat basis) LE or rosemary extract (RE) as comparison or 0.01% (fat basis) BHA with 0 or 1.5% NaCl. Raw and precooked (75 °C) patties were packaged in polyvinylchloride overwrapped trays and stored at 2 °C up to 7 and 14 d, respectively, or at -20 °C up to 6 mo. Lipid oxidation (thiobarbituric acid-reactive substances [TBARS]) and sensory attributes of stored patty samples were evaluated, radical scavenging activity of the LE was measured, and the active phenolic compounds were identified. Cooking yield (<85%) was similar among antioxidant treatments, and lipid oxidation was minimal in refrigerated or frozen raw samples. However, TBARS values in refrigerated precooked control patties (0.22 mg/kg) rose to 9.3 to 9.4 mg/kg after 14 d, compared to 3.4 to 4.4 and 4.4 to 6.9 mg/kg in patties treated with 0.1% LE and RE, respectively. In frozen precooked samples, TBARS (0.22 mg/kg) increased to 1.3 mg/kg (P < 0.05) in control patties after 6 mo and had no significant change in patties treated with 0.1% LE or 0.01% butylated hydroxyanisol. Sensory panel evaluation confirmed strong inhibition of rancidity production by LE, corroborating its remarkable antiradical activity due to the presence of multiple phenolics. The results indicate that licorice has great potential as a natural antioxidative additive to extend the shelf-life of precooked pork.
Journal of Food Science | 2011
Rebecca M. Delles; Youling L. Xiong; Alma D. True
UNLABELLED This study investigated the influence of an oxygen-enriched modified atmosphere packaging (HiOx: 80% O₂/20% CO₂) in comparison with air-permeable polyvinylchloride (PVC) wrapping and partial vacuum (VP: 60%) packaging on the ability of myofibrils to imbibe water during retail display of fresh ground pork at 2 to 4 °C. Both HiOx and PVC muscles after 4 d showed maximum myofibril swelling and A-band dissolution when isolated myofibrils were subjected to a graded series of salt solutions (0.2→0.4 M NaCl with 10-mM sodium pyrophosphate, pH 6.2), while VP samples exhibited no remarkable change. Protein carbonyl content increased substantially from day 0 to 4 in all muscle samples. For HiOx, muscle hydration capacity increased linearly (P < 0.05) during storage up to 14 d, corresponding to protein carbonyl production. No significant changes in hydration properties were noted in VP muscle samples, which also maintained lower levels of protein oxidation, during storage up to 21 d. These results indicated that packaging in modified atmosphere with high levels of oxygen could result in increased protein oxidation but enhanced hydration capacity of fresh meat. PRACTICAL APPLICATION Packaging of fresh meat, including ground pork, under an oxygen-enriched atmosphere condition is widely used in the industry to preserve red color of meat. Results from the present study indicate that high oxygen packaging has a discordant effect on fresh ground pork: it enhances hydration but decreases water-binding, and this seems to be caused by increased swelling of muscle fibers due to mild protein oxidation. Hence, it is advisable to employ a water-binding agent in this type of packaging system so as to retain the moisture in stored fresh pork products while maintaining the color stability.
Journal of Agricultural and Food Chemistry | 2016
Yungang Cao; Alma D. True; Jie Chen; Youling L. Xiong
The dose-dependent effects of gallic acid (GA; at 0, 6, 30, and 150 μmol/g protein) on chemical changes and gelling properties of oxidatively stressed porcine myofibrillar protein (MP) and in vitro digestibility of the gels were investigated. The incorporation of GA suppressed lipid oxidation and protein carbonyl formation but promoted the loss of thiol and amine groups, destabilization of the tertiary structure, aggregation, and cross-linking. The gelling potential (storage modulus) of MP was increased by nearly 50% with 6 and 30 μmol/g of GA, corresponding to enhanced protein unfolding and aggregation and formation of disulfide-dominant covalent bonds. However, GA at 150 μmol/g induced macroscopic aggregations and insolubility of MP, resulting in poorly structured gels. Despite the oxidative changes, MP gels did not show reduced susceptibility to digestive enzymes in vitro.
British Poultry Science | 2015
Rebecca M. Delles; Youling L. Xiong; Alma D. True; T. Ao; K. A. Dawson
Abstract 1. The impact of dietary antioxidants and degree of oil oxidation on textural attributes of chicken broiler breast meat stored in oxygen-enriched, air-permeable polyvinylchloride and skin packaging systems during retail display at 2–4°C for up to 21 d was assessed. 2. Broilers were fed on diets either with a low-oxidised oil (peroxide 23 mEq O2/kg) or with a high-oxidised oil (peroxide 121 mEq O2/kg), with or without an algae-based antioxidant and organic mineral antioxidant supplement for 42 d. 3. Fatty acids and radical scavenging activities of the diets were estimated. Meat colour, pH, myofibrillar protein profile and textural traits were measured. 4. Diets with high-oxidised oil reduced stearic, linoleic and linolenic acid content compared to low-oxidised oil samples, regardless of antioxidant supplementation. Meat colour and pH varied among dietary treatments throughout storage. Meat samples from the antioxidant dietary group, irrespective of oil oxidation level, had lower amounts of purge and cooking losses compared to the unsupplemented diets. For all packaging systems, meat shear force was significantly higher for broilers fed on high-oxidised diets. 5. The results demonstrate that dietary antioxidant supplementation can minimise the negative impact of oxidised oil on the quality of broiler meat packaged in different atmospheric environments.
Food Chemistry | 2018
Yungang Cao; Nasi Ai; Alma D. True; Youling L. Xiong
The dose-dependent effects of (-)-epigallocatechin-3-gallate (EGCG; at 0, 50, 100, 200, 500, and 1000 mg/L) on the physical, chemical, and oxidative stability of porcine myofibrillar protein (MP)-soybean oil emulsion systems were investigated. The results showed EGCG at all levels effectively suppressed lipid oxidation in MP emulsion composite gels during the entire chill storage (at 4 °C for 0, 3, or 7 days). The incorporation of EGCG at higher concentrations (>100 mg/L) promoted the loss of sulfhydryls, reduction of surface hydrophobicity, and aggregation and cross-linking of MP. As a result, high concentrations of EGCG (500 and 1000 mg/L) hampered emulsification and gel formation of MP. However, EGCG at lower concentrations (50-200 mg/L) improved the oxidative stability of meat emulsions without jeopardizing the textural stability.
British Poultry Science | 2016
Rebecca M. Delles; Alma D. True; T. Ao; K. A. Dawson; Youling L. Xiong
ABSTRACT The influence of dietary antioxidants and quality of oil on the oxidative and physico-chemical properties of chicken broiler breast and thigh meat stored was studied in either an oxygen-enriched (HiOx: 80% O2/20% CO2) or an air-permeable polyvinylchloride (PVC) packaging system during retail display at 2–4°C for up to 14 and 7 d, respectively. Broilers were fed on a diet with either a low-oxidised (peroxide value (POV) 23 meq O2/kg) or a high-oxidised (POV 121 meq O2/kg) oil, supplemented with or without an algae/selenium-based antioxidant with organic minerals, for 42 d. Lipid and protein oxidation, myofibrillar protein profile and purge loss were analysed. In both packaging systems, lipid oxidation (thiobarbituric acid-reactive substances [TBARS]) was inhibited by up to 65% and 57% in chicken breast and thigh, respectively, with an antioxidant-supplemented diet compared to those without. In both breast and thigh samples, protein sulfhydryls and water-holding capacity (purge loss) were better protected by the antioxidant dietary treatment, regardless of oil quality. Thigh muscles had up to sevenfold greater TBARS formation and more myosin heavy chain losses compared to breast samples. Antioxidant supplementation was more protective against lipid oxidation and water-holding capacity in the group fed on high-oxidised oil compared to those fed on low-oxidised oil. The results suggest that dietary antioxidants can minimise the negative impact of oxidised oil on broiler meat quality, and this protection was more pronounced for thigh than breast muscle, indicating inherent variations between muscle fibre types.
Animal Feed Science and Technology | 2003
Ryan Michael Yamka; Uttra Jamikorn; Alma D. True; D. L. Harmon
Journal of Animal Science | 2003
Ryan Michael Yamka; U. Jamikorn; Alma D. True; D. L. Harmon
Energy metabolism in animals. Proceedings of the 15th symposium on energy metabolism in animals, Snekkersten, Denmark, 11-16 September 2000. | 2001
D. L. Harmon; C. J. Richards; K. C. Swanson; J. A. Howell; J. C. Matthews; Alma D. True; G. B. Huntington; S. A. Gahr; R. W. Russell; A. Chwalibog; K. Jakobsen