Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alma Kuechler is active.

Publication


Featured researches published by Alma Kuechler.


Human Molecular Genetics | 2013

A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling

Dagmar Wieczorek; Nina Bögershausen; Filippo Beleggia; Sabine Steiner-Haldenstätt; Esther Pohl; Yun Li; Esther Milz; Marcel Martin; Holger Thiele; Janine Altmüller; Yasemin Alanay; Hülya Kayserili; Ludger Klein-Hitpass; Stefan Böhringer; Andreas Wollstein; Beate Albrecht; Koray Boduroglu; Almuth Caliebe; Krystyna H. Chrzanowska; Ozgur Cogulu; Francesca Cristofoli; Johanna Christina Czeschik; Koenraad Devriendt; Maria Teresa Dotti; Nursel Elcioglu; Blanca Gener; Timm O. Goecke; Małgorzata Krajewska-Walasek; Encarnación Guillén-Navarro; Joussef Hayek

Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.


European Journal of Human Genetics | 2009

A paternal deletion of MKRN3 , MAGEL2 and NDN does not result in Prader–Willi syndrome

Deniz Kanber; Jacques C. Giltay; Dagmar Wieczorek; Corinna Zogel; Ron Hochstenbach; Almuth Caliebe; Alma Kuechler; Bernhard Horsthemke; Karin Buiting

The Prader–Willi syndrome (PWS) is caused by a 5–6 Mbp de novo deletion on the paternal chromosome 15, maternal uniparental disomy 15 or an imprinting defect. All three lesions lead to the lack of expression of imprinted genes that are active on the paternal chromosome only: MKRN3, MAGEL2, NDN, C15orf2, SNURF-SNRPN and more than 70 C/D box snoRNA genes (SNORDs). The contribution to PWS of any of these genes is unknown, because no single gene mutation has been described so far. We report on two patients with PWS who have an atypical deletion on the paternal chromosome that does not include MKRN3, MAGEL2 and NDN. In one of these patients, NDN has a normal DNA methylation pattern and is expressed. In another patient, the paternal alleles of these genes are deleted as the result of an unbalanced translocation 45,X,der(X)t(X;15)(q28;q11.2). This patient is obese and mentally retarded, but does not have PWS. We conclude that a deficiency of MKRN3, MAGEL2 and NDN is not sufficient to cause PWS.


Cytogenetic and Genome Research | 2002

Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries

Thomas Liehr; A. Weise; A. Heller; H. Starke; K. Mrasek; Alma Kuechler; Heinz-Ulli G. Weier; U. Claussen

Multicolor chromosome banding (MCB) allows the delineation of chromosomal regions with a resolution of a few megabasepairs, i.e., slightly below the size of most visible chromosome bands. Based on the hybridization of overlapping region-specific probe libraries, chromosomal subregions are hybridized with probes that fluoresce in distinct wavelength intervals, so they can be assigned predefined pseudo-colors during the digital imaging and visualization process. The present study demonstrates how MCB patterns can be produced by region-specific microdissection derived (mcd) libraries as well as collections of yeast or bacterial artificial chromosomes (YACs and BACs, respectively). We compared the efficiency of an mcd library based approach with the hybridization of collections of locus-specific probes (LSP) for fluorescent banding of three rather differently sized human chromosomes, i.e., chromosomes 2, 13, and 22. The LSP sets were comprised of 107 probes specific for chromosome 2, 82 probes for chromosome 13, and 31 probes for chromosome 22. The results demonstrated a more homogeneous coverage of chromosomes and thus, more desirable banding patterns using the microdissection library-based MCB. This may be related to the observation that chromosomes are difficult to cover completely with YAC and/or BAC clones as single-color fluorescence in situ hybridization (FISH) experiments showed. Mcd libraries, on the other hand, provide high complexity probes that work well as region-specific paints, but do not readily allow positioning of breakpoints on genetic or physical maps as required for the positional cloning of genes. Thus, combinations of mcd libraries and locus-specific large insert DNA probes appear to be the most efficient tools for high-resolution cytogenetic analyses.


American Journal of Medical Genetics Part A | 2006

Is there a higher incidence of maternal uniparental disomy 14 [upd(14)mat]? Detection of 10 new patients by methylation‐specific PCR

Diana Mitter; Karin Buiting; Ferdinand von Eggeling; Alma Kuechler; Thomas Liehr; Ulrike A. Mau-Holzmann; Eva-Christina Prott; Dagmar Wieczorek; Gabriele Gillessen-Kaesbach

Maternal uniparental disomy for chromosome 14 [upd(14)mat] is associated with a characteristic phenotype including pre‐ and postnatal growth retardation, muscular hypotonia, feeding problems, motor delay, small hands and feet, precocious puberty and truncal obesity. Patients with upd(14)mat show features overlapping with Prader–Willi syndrome (PWS) and are probably underdiagnosed. Maternal upd(14) is frequently described in carriers of a Robertsonian translocation involving chromosome 14, but is also found in patients with a normal karyotype. Based on the above mentioned criteria we have identified six patients with upd(14)mat including two patients with a normal karyotype, one patient with a de novo Robertsonian translocation (14;21), one patient with a familial Robertsonian translocation (13;14) and two patients with a marker chromosome. In addition, we analyzed a cohort of 33 patients with low birth weight, feeding difficulties and consecutive obesity in whom PWS had been excluded by methylation analysis of SNRPN. In four of these patients (12%) we detected upd(14)mat. For rapid testing of upd(14)mat we analyzed the methylation status of the imprinted MEG3 locus. In conclusion, we recommend considering upd(14)mat in patients with low birth weight, growth retardation, neonatal feeding problems, muscular hypotonia, motor delay, precocious puberty and truncal obesity as well as in patients with a PWS like phenotype presenting with low birth weight, feeding difficulties and obesity.


Mutation Research | 2003

Human adenoma cells are highly susceptible to the genotoxic action of 4-hydroxy-2-nonenal

Anja Schaeferhenrich; Gabriele Beyer-Sehlmeyer; Grit Festag; Alma Kuechler; Natja Haag; Anja Weise; Thomas Liehr; Uwe Claussen; Brigitte Marian; Wolfgang Sendt; Johannes Scheele; Beatrice L. Pool-Zobel

Oxidative stress and resulting lipid peroxidation are important risk factors for dietary-associated colon cancer. To get a better understanding of the underlying molecular mechanisms, we need to characterise the risk potential of the key compounds, which cause DNA damage in cancer-relevant genes and especially in human target cells. Here, we investigated the genotoxic effects of 4-hydroxy-2-nonenal (HNE) and hydrogen peroxide (H(2)O(2)) in human colon cells (LT97). LT97 is a recently established cell line from a differentiated microadenoma and represents cells from frequent preneoplastic lesions of the colon. The genomic characterisation of LT97 was performed with 24-colour FISH. Genotoxicity was determined with single cell microgelelectrophoresis (Comet assay). Comet FISH was used to study the sensitivity of TP53-a crucial target gene for the transition of adenoma to carcinoma-towards HNE. Expression of glutathione S-transferases (GST), which deactivates HNE, was determined as GST activity and GSTP1 protein levels. LT97 cells were compared to primary human colon cells and to a differentiated clone of HT29. Karyotyping revealed that the LT97 cell line had a stable karyotype with only two clones, each containing a translocation t(7;17) and one aberrant chromosome 1. The Comet assay experiments showed that both HNE and H(2)O(2) were clearly genotoxic in the different human colon cells. HNE was more genotoxic in LT97 than in HT29clone19A and primary human colon cells. After HNE incubation, TP53 migrated more efficiently into the comet tail than the global DNA, which suggests a higher susceptibility of the TP53 gene to HNE. GST expression was significantly lower in LT97 than in HT29clone19A cells, which could explain the higher genotoxicity of HNE in the colon adenoma cells. In conclusion, the LT97 is a relevant model for studying genotoxicity of colon cancer risk factors since colon adenoma are common preneoplastic lesions occurring in advanced age.


European Journal of Human Genetics | 2015

Next-generation sequencing in X-linked intellectual disability

Andreas Tzschach; Ute Grasshoff; Stefanie Beck-Woedl; Claudia Dufke; Claudia Bauer; Martin Kehrer; Christina Evers; Ute Moog; Barbara Oehl-Jaschkowitz; Nataliya Di Donato; Robert Maiwald; Christine Jung; Alma Kuechler; Solveig Schulz; Peter Meinecke; Stephanie Spranger; Jürgen Kohlhase; Jörg Seidel; Silke Reif; Manuela Rieger; Angelika Riess; Marc Sturm; Julia Bickmann; Christopher Schroeder; Andreas Dufke; Olaf Riess; Peter Bauer

X-linked intellectual disability (XLID) is a genetically heterogeneous disorder with more than 100 genes known to date. Most genes are responsible for a small proportion of patients only, which has hitherto hampered the systematic screening of large patient cohorts. We performed targeted enrichment and next-generation sequencing of 107 XLID genes in a cohort of 150 male patients. Hundred patients had sporadic intellectual disability, and 50 patients had a family history suggestive of XLID. We also analysed a sporadic female patient with severe ID and epilepsy because she had strongly skewed X-inactivation. Target enrichment and high parallel sequencing allowed a diagnostic coverage of >10 reads for ~96% of all coding bases of the XLID genes at a mean coverage of 124 reads. We found 18 pathogenic variants in 13 XLID genes (AP1S2, ATRX, CUL4B, DLG3, IQSEC2, KDM5C, MED12, OPHN1, SLC9A6, SMC1A, UBE2A, UPF3B and ZDHHC9) among the 150 male patients. Thirteen pathogenic variants were present in the group of 50 familial patients (26%), and 5 pathogenic variants among the 100 sporadic patients (5%). Systematic gene dosage analysis for low coverage exons detected one pathogenic hemizygous deletion. An IQSEC2 nonsense variant was detected in the female ID patient, providing further evidence for a role of this gene in encephalopathy in females. Skewed X-inactivation was more frequently observed in mothers with pathogenic variants compared with those without known X-linked defects. The mutation rate in the cohort of sporadic patients corroborates previous estimates of 5–10% for X-chromosomal defects in male ID patients.


American Journal of Medical Genetics Part A | 2009

Nicolaides-Baraitser syndrome: Delineation of the phenotype.

Sérgio B. Sousa; Omar A. Abdul-Rahman; Armand Bottani; Valérie Cormier-Daire; Alan Fryer; Gabriele Gillessen-Kaesbach; Denise Horn; Dragana Josifova; Alma Kuechler; Melissa Lees; Kay D. MacDermot; Alex Magee; Fanny Morice-Picard; Elizabeth Rosser; Ajoy Sarkar; Nora Shannon; Irene Stolte-Dijkstra; Alain Verloes; Emma Wakeling; Louise C. Wilson; Raoul C. M. Hennekam

Nicolaides–Baraitser syndrome (NBS) is an infrequently described condition, thus far reported in five cases. In order to delineate the phenotype and its natural history in more detail, we gathered data on 18 hitherto unreported patients through a multi‐center collaborative study, and follow‐up data of the earlier reported patients. A detailed comparison of the 23 patients is provided. NBS is a distinct and recognizable entity, and probably has been underdiagnosed until now. Main clinical features are severe mental retardation with absent or limited speech, seizures, short stature, sparse hair, typical facial characteristics, brachydactyly, prominent finger joints and broad distal phalanges. Some of the features are progressive with time. The main differential diagnosis is Coffin–Siris syndrome. There is no important gender difference in occurrence and frequency of the syndrome, and all cases have been sporadic thus far. Microarray analysis performed in 14 of the patients gave normal results. Except for the progressive nature there are no clues to the cause.


Cytogenetic and Genome Research | 2003

Multitude multicolor chromosome banding (mMCB): a comprehensive one-step multicolor FISH banding method

Anja Weise; Anita Heller; Heike Starke; Kristin Mrasek; Alma Kuechler; Beatrice L. Pool-Zobel; Uwe Claussen; Thomas Liehr

Multicolor chromosome banding (MCB) using one single chromosome-specific MCB probe set per experiment was previously reported as powerful tool in molecular cytogenetics for the characterization of all kinds of human marker chromosomes. However, a quick analysis of karyotypes with highly complex chromosomal changes was hampered by the problem that up to 24 MCB experiments were necessary for a comprehensive karyotype description. To overcome that limitation the 138 available region-specific microdissection-derived libraries for all human chromosomes were combined to one single probe set, called multitude MCB (mMCB). A typical fluorescence banding pattern along the human karyotype is produced, which can be evaluated either by transforming these profiles into chromosome region-specific pseudo-colors or more reliably by studying the fluorescence profiles. The mMCB probe set has been applied on chromosomes of normal male and female probands, two primary myelodysplastic syndromes and two solid tumor cell lines. Additionally, a cell line of Gorilla gorilla (GGO) studied previously by single chromosome-specific MCB was reevaluated by the mMCB method. All results were in concordance with those obtained in parallel or by other cytogenetic and molecular cytogenetic approaches indicating that mMCB is a powerful multicolor FISH banding tool for fast characterization of complex karyotypes.


Cytogenetic and Genome Research | 2006

Multicolor fluorescence in situ hybridization (FISH) applied to FISH-banding

Thomas Liehr; Heike Starke; Anita Heller; Nadezda Kosyakova; Kristin Mrasek; Madeleine Gross; C. Karst; U. Steinhaeuser; F. Hunstig; I. Fickelscher; Alma Kuechler; V. Trifonov; S.A. Romanenko; Anja Weise

During the last decade not only multicolor fluorescence in situ hybridization (FISH) using whole chromosome paints as probes, but also numerous chromosome banding techniques based on FISH have been developed for the human and for the murine genome. This review focuses on such FISH-banding techniques, which were recently defined as ‘any kind of FISH technique, which provide the possibility to characterize simultaneously several chromosomal subregions smaller than a chromosome arm. FISH-banding methods fitting that definition may have quite different characteristics, but share the ability to produce a DNA-specific chromosomal banding’. While the standard chromosome banding techniques like GTG lead to a protein-related black and white banding pattern, FISH-banding techniques are DNA-specific, more colorful and, thus, more informative. For some, even high-resolution FISH-banding techniques the development is complete and they can be used for whole genome hybridizations in one step. Other FISH-banding methods are only available for selected chromosomes and/or are still under development. FISH-banding methods have successfully been applied in research in evolution- and radiation-biology, as well as in studies on the nuclear architecture. Moreover, their suitability for diagnostic purposes has been proven in prenatal, postnatal and tumor cytogenetics, indicating that they are an important tool with the potential to partly replace the conventional banding techniques in the future.


Food and Chemical Toxicology | 2003

Putative colon cancer risk factors damage global DNA and TP53 in primary human colon cells isolated from surgical samples.

A. Schaeferhenrich; W. Sendt; J. Scheele; Alma Kuechler; Thomas Liehr; U. Claussen; Alexander Rapp; K.-O. Greulich; Beatrice L. Pool-Zobel

This study describes a novel in vitro method in genetic toxicology that is based on detection of chemical-induced DNA damage connected with altered migration of TP53 in primary human colonocytes. Techniques were developed to isolate high numbers of human epithelial colon cells from surgical tissues. High quantities of viable cells were obtained per donor. The primary cells were treated with the endogenous risk factors trans-2-hexenal, and hydrogen peroxide. Global DNA damage and repair were measured by single-cell gel electrophoresis (Comet assay). We compared responses of primary colon cells to HT29clone19A, a differentiated human colon tumour cell line, for which the karyotype was analysed with 24-colour FISH. Both compounds were genotoxic in both cell types and most of the induced DNA damage was repaired after 30 min. Specific migration of TP53 was determined by fluorescence in situ hybridization (Comet FISH). Using primary colon cells, we quantified the migration of TP53 signals into the comet tails. In these cells TP53 was more sensitive than global DNA for genotoxicity induced by trans-2-hexenal and H(2)O(2). HT29clone19A cells cannot be used for Comet FISH because of their aberrant karyotype. The approach described allows us to obtain more knowledge of putative risk factors in colon carcinogenesis.

Collaboration


Dive into the Alma Kuechler's collaboration.

Top Co-Authors

Avatar

Dagmar Wieczorek

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beate Albrecht

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ute Hehr

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard G. Grabenbauer

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge