Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alma L. Burlingame is active.

Publication


Featured researches published by Alma L. Burlingame.


Cell | 2005

WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development.

Joanna Wysocka; Tomek Swigut; Thomas A. Milne; Yali Dou; Xin Zhang; Alma L. Burlingame; Robert G. Roeder; Ali H. Brivanlou; C. David Allis

Histone H3 lysine 4 (K4) methylation has been linked to the transcriptional activation in a variety of eukaryotic species. Here we show that a common component of MLL1, MLL2, and hSet1 H3 K4 methyltransferase complexes, the WD40-repeat protein WDR5, directly associates with histone H3 di- and trimethylated at K4 and with H3-K4-dimethylated nucleosomes. WDR5 is required for binding of the methyltransferase complex to the K4-dimethylated H3 tail as well as for global H3 K4 trimethylation and HOX gene activation in human cells. WDR5 is essential for vertebrate development, in that WDR5-depleted X. laevis tadpoles exhibit a variety of developmental defects and abnormal spatial Hox gene expression. Our results are the first demonstration that a WD40-repeat protein acts as a module for recognition of a specific histone modification and suggest a mechanism for reading and writing an epigenetic mark for gene activation.


Chemistry & Biology | 2000

Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools

Doron C. Greenbaum; Katalin F. Medzihradszky; Alma L. Burlingame; Matthew Bogyo

BACKGROUND Analysis of global changes in gene transcription and translation by systems-based genomics and proteomics approaches provides only indirect information about protein function. In many cases, enzymatic activity fails to correlate with transcription or translation levels. Therefore, a direct method for broadly determining activities of an entire class of enzymes on a genome-wide scale would be of great utility. RESULTS We have engineered chemical probes that can be used to broadly track activity of cysteine proteases. The structure of the general cysteine protease inhibitor E-64 was used as a scaffold. Analogs were synthesized by varying the core peptide recognition portion while adding affinity tags (biotin and radio-iodine) at distal sites. The resulting probes containing a P2 leucine residue (DCG-03 and DCG-04) targeted the same broad set of cysteine proteases as E-64 and were used to profile these proteases during the progression of a normal skin cell to a carcinoma. A library of DCG-04 derivatives was constructed in which the leucine residue was replaced with all natural amino acids. This library was used to obtain inhibitor activity profiles for multiple protease targets in crude cellular extracts. Finally, the affinity tag of DCG-04 allowed purification of modified proteases and identification by mass spectrometry. CONCLUSIONS We have created a simple and flexible method for functionally identifying cysteine proteases while simultaneously tracking their relative activity levels in crude protein mixtures. These probes were used to determine relative activities of multiple proteases throughout a defined model system for cancer progression. Furthermore, information obtained from libraries of affinity probes provides a rapid method for obtaining detailed functional information without the need for prior purification/identification of targets.


Nature | 2012

Global landscape of HIV-human protein complexes

Stefanie Jäger; Peter Cimermancic; Natali Gulbahce; Jeffrey R. Johnson; Kathryn E. McGovern; Starlynn C. Clarke; Michael Shales; Gaelle Mercenne; Lars Pache; Kathy H. Li; Hilda Hernandez; Gwendolyn M. Jang; Shoshannah L. Roth; Eyal Akiva; John Marlett; Melanie Stephens; Iván D’Orso; Jason Fernandes; Marie Fahey; Cathal Sean Mahon; Anthony J. O’Donoghue; Aleksandar Todorovic; John H. Morris; David A. Maltby; Tom Alber; Gerard Cagney; Frederic D. Bushman; John A. T. Young; Sumit K. Chanda; Wesley I. Sundquist

Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host’s cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV–human protein–protein interactions involving 435 individual human proteins, with ∼40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.


The EMBO Journal | 2002

Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection

Silvio M. Zanata; Marilene H. Lopes; Adriana F. Mercadante; Glaucia N. M. Hajj; Luciana B. Chiarini; Regina Nomizo; Adriana R. O. Freitas; Ana Lucia Beirão Cabral; Kil Sun Lee; Maria A. Juliano; Elizabeth de Oliveira; Saul G. Jachieri; Alma L. Burlingame; Lan Huang; Rafael Linden; Ricardo R. Brentani; Vilma R. Martins

Prions are composed of an isoform of a normal sialoglycoprotein called PrPc, whose physiological role has been under investigation, with focus on the screening for ligands. Our group described a membrane 66 kDa PrPc‐binding protein with the aid of antibodies against a peptide deduced by complementary hydropathy. Using these antibodies in western blots from two‐dimensional protein gels followed by sequencing the specific spot, we have now identified the molecule as stress‐inducible protein 1 (STI1). We show that this protein is also found at the cell membrane besides the cytoplasm. Both proteins interact in a specific and high affinity manner with a Kd of 10−7 M. The interaction sites were mapped to amino acids 113–128 from PrPc and 230–245 from STI1. Cell surface binding and pull‐down experiments showed that recombinant PrPc binds to cellular STI1, and co‐immunoprecipitation assays strongly suggest that both proteins are associated in vivo. Moreover, PrPc interaction with either STI1 or with the peptide we found that represents the binding domain in STI1 induce neuropro tective signals that rescue cells from apoptosis.


Science | 2008

BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis

Wenqiang Tang; Tae-Wuk Kim; Juan A. Oses-Prieto; Yu Sun; Zhiping Deng; Shengwei Zhu; Ruiju Wang; Alma L. Burlingame; Zhi-Yong Wang

Brassinosteroids (BRs) bind to the extracellular domain of the receptor kinase BRI1 to activate a signal transduction cascade that regulates nuclear gene expression and plant development. Many components of the BR signaling pathway have been identified and studied in detail. However, the substrate of BRI1 kinase that transduces the signal to downstream components remains unknown. Proteomic studies of plasma membrane proteins lead to the identification of three homologous BR-signaling kinases (BSK1, BSK2, and BSK3). The BSKs are phosphorylated by BRI1 in vitro and interact with BRI1 in vivo. Genetic and transgenic studies demonstrate that the BSKs represent a small family of kinases that activate BR signaling downstream of BRI1. These results demonstrate that BSKs are the substrates of BRI1 kinase that activate downstream BR signal transduction.


PLOS Biology | 2010

Widespread Protein Aggregation as an Inherent Part of Aging in C. elegans

Della C. David; Noah Ollikainen; Jonathan C. Trinidad; Michael Cary; Alma L. Burlingame; Cynthia Kenyon

Several hundred proteins become insoluble and aggregation-prone as a consequence of aging in Caenorhabditis elegans. The data indicate that these proteins influence disease-related protein aggregation and toxicity.


Cell | 2008

Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini.

Sami Mahrus; Jonathan C. Trinidad; David T. Barkan; Andrej Sali; Alma L. Burlingame; James A. Wells

The nearly 600 proteases in the human genome regulate a diversity of biological processes, including programmed cell death. Comprehensive characterization of protease signaling in complex biological samples is limited by available proteomic methods. We have developed a general approach for global identification of proteolytic cleavage sites using an engineered enzyme to selectively biotinylate free protein N termini for positive enrichment of corresponding N-terminal peptides. Using this method to study apoptosis, we have sequenced 333 caspase-like cleavage sites distributed among 292 protein substrates. These sites are generally not predicted by in vitro caspase substrate specificity but can be used to predict other physiological caspase cleavage sites. Structural bioinformatic studies show that caspase cleavage sites often appear in surface-accessible loops and even occasionally in helical regions. Strikingly, we also find that a disproportionate number of caspase substrates physically interact, suggesting that these dimeric proteases target protein complexes and networks to elicit apoptosis.


Nature Cell Biology | 2009

Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors

Tae-Wuk Kim; Shenheng Guan; Yu Sun; Zhiping Deng; Wenqiang Tang; Jian-Xiu Shang; Ying Sun; Alma L. Burlingame; Zhi-Yong Wang

Brassinosteroid (BR) regulates gene expression and plant development through a receptor kinase-mediated signal transduction pathway. Despite the identification of many components of this pathway, it remains unclear how the BR signal is transduced from the cell surface to the nucleus. Here we describe a complete BR signalling pathway by elucidating key missing steps. We show that phosphorylation of BSK1 (BR-signalling kinase 1) by the BR receptor kinase BRI1 (BR-insensitive 1) promotes BSK1 binding to the BSU1 (BRI1 suppressor 1) phosphatase, and BSU1 inactivates the GSK3-like kinase BIN2 (BR-insensitive 2) by dephosphorylating a conserved phospho-tyrosine residue (pTyr 200). Mutations that affect phosphorylation/dephosphorylation of BIN2 pTyr200 (bin2-1, bin2-Y200F and quadruple loss-of-function of BSU1-related phosphatases) support an essential role for BSU1-mediated BIN2 dephosphorylation in BR-dependent plant growth. These results demonstrate direct sequential BR activation of BRI1, BSK1 and BSU1, and inactivation of BIN2, leading to accumulation of unphosphorylated BZR (brassinazole resistant) transcription factors in the nucleus. This study establishes a fully connected BR signalling pathway and provides new insights into the mechanism of GSK3 regulation.


Cell | 2007

The Site-Specific Installation of Methyl-Lysine Analogs into Recombinant Histones

Matthew D. Simon; Feixia Chu; Lisa R. Racki; Cecile C. de la Cruz; Alma L. Burlingame; Barbara Panning; Geeta J. Narlikar; Kevan M. Shokat

Histone lysine residues can be mono-, di-, or trimethylated. These posttranslational modifications regulate the affinity of effector proteins and may also impact chromatin structure independent of their role as adaptors. In order to study histone lysine methylation, particularly in the context of chromatin, we have developed a chemical approach to install analogs of methyl lysine into recombinant proteins. This approach allows for the rapid generation of large quantities of histones in which the site and degree of methylation can be specified. We demonstrate that these methyl-lysine analogs (MLAs) are functionally similar to their natural counterparts. These methylated histones were used to examine the influence of specific lysine methylation on the binding of effecter proteins and the rates of nucleosome remodeling. This simple method of introducing site-specific and degree-specific methylation into recombinant histones provides a powerful tool to investigate the biochemical mechanisms by which lysine methylation influences chromatin structure and function.


Science | 1996

A Crosslinked Cofactor in Lysyl Oxidase: Redox Function for Amino Acid Side Chains

Sophie X. Wang; Minae Mure; Katalin F. Medzihradszky; Alma L. Burlingame; Doreen E. Brown; David M. Dooley; Alan Jay Smith; Herbert M. Kagan; Judith P. Klinman

A previously unknown redox cofactor has been identified in the active site of lysyl oxidase from the bovine aorta. Edman sequencing, mass spectrometry, ultraviolet-visible spectra, and resonance Raman studies showed that this cofactor is a quinone. Its structure is derived from the crosslinking of the ϵ-amino group of a peptidyl lysine with the modified side chain of a tyrosyl residue, and it has been designated lysine tyrosylquinone. This quinone appears to be the only example of a mammalian cofactor formed from the crosslinking of two amino acid side chains. This discovery expands the range of known quino-cofactor structures and has implications for the mechanism of their biogenesis.

Collaboration


Dive into the Alma L. Burlingame's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan C. Trinidad

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Shenheng Guan

University of California

View shared research outputs
Top Co-Authors

Avatar

Zhi-Yong Wang

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Lan Huang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge