Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alma M. Astudillo is active.

Publication


Featured researches published by Alma M. Astudillo.


Biochimica et Biophysica Acta | 2009

Control of free arachidonic acid levels by phospholipases A2 and lysophospholipid acyltransferases

Gema Pérez-Chacón; Alma M. Astudillo; David Balgoma; María A. Balboa; Jesús Balsinde

Arachidonic acid (AA) and its oxygenated derivatives, collectively known as the eicosanoids, are key mediators of a wide variety of physiological and pathophysiological states. AA, obtained from the diet or synthesized from linoleic acid, is rapidly incorporated into cellular phospholipids by the concerted action of arachidonoyl-CoA synthetase and lysophospholipid acyltransferases. Under the appropriate conditions, AA is liberated from its phospholipid storage sites by the action of one or various phospholipase A(2) enzymes. Thus, cellular availability of AA, and hence the amount of eicosanoids produced, depends on an exquisite balance between phospholipid reacylation and hydrolysis reactions. This review focuses on the enzyme families that are involved in these reactions in resting and stimulated cells.


Endocrinology | 2011

The PPARβ/δ Activator GW501516 Prevents the Down-Regulation of AMPK Caused by a High-Fat Diet in Liver and Amplifies the PGC-1α-Lipin 1-PPARα Pathway Leading to Increased Fatty Acid Oxidation

Emma Barroso; Ricardo Rodríguez-Calvo; Lucía Serrano-Marco; Alma M. Astudillo; Jesús Balsinde; Xavier Palomer; Manuel Vázquez-Carrera

Metabolic syndrome-associated dyslipidemia is mainly initiated by hepatic overproduction of the plasma lipoproteins carrying triglycerides. Here we examined the effects of the peroxisome proliferator-activated receptors (PPAR)-β/δ activator GW501516 on high-fat diet (HFD)-induced hypertriglyceridemia and hepatic fatty acid oxidation. Exposure to the HFD caused hypertriglyceridemia that was accompanied by reduced hepatic mRNA levels of PPAR-γ coactivator 1 (PGC-1)-α and lipin 1, and these effects were prevented by GW501516 treatment. GW501516 treatment also increased nuclear lipin 1 protein levels, leading to amplification in the PGC-1α-PPARα signaling system, as demonstrated by the increase in PPARα levels and PPARα-DNA binding activity and the increased expression of PPARα-target genes involved in fatty acid oxidation. These effects of GW501516 were accompanied by an increase in plasma β-hydroxybutyrate levels, demonstrating enhanced hepatic fatty acid oxidation. Moreover, GW501516 increased the levels of the hepatic endogenous ligand for PPARα, 16:0/18:1-phosphatidilcholine and markedly enhanced the expression of the hepatic Vldl receptor. Interestingly, GW501516 prevented the reduction in AMP-activated protein kinase (AMPK) phosphorylation and the increase in phosphorylated levels of ERK1/2 caused by HFD. In addition, our data indicate that the activation of AMPK after GW501516 treatment in mice fed HFD might be the result of an increase in the AMP to ATP ratio in hepatocytes. These findings indicate that the hypotriglyceridemic effect of GW501516 in HFD-fed mice is accompanied by an increase in phospho-AMPK levels and the amplification of the PGC-1α-lipin 1-PPARα pathway.


Biochimica et Biophysica Acta | 2012

Dynamics of arachidonic acid mobilization by inflammatory cells

Alma M. Astudillo; David Balgoma; María A. Balboa; Jesús Balsinde

The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites.


Journal of Immunology | 2009

Coordinate regulation of TLR-mediated arachidonic acid mobilization in macrophages by group IVA and group V phospholipase A2s.

Violeta Ruipérez; Alma M. Astudillo; María A. Balboa; Jesús Balsinde

Macrophages can be activated through TLRs for a variety of innate immune responses. In contrast with the wealth of data existing on TLR-dependent gene expression and resultant cytokine production, very little is known on the mechanisms governing TLR-mediated arachidonic acid (AA) mobilization and subsequent eicosanoid production. We have previously reported the involvement of both cytosolic group IVA phospholipase A2 (cPLA2) and secreted group V phospholipase A2 (sPLA2-V) in regulating the AA mobilization response of macrophages exposed to bacterial LPS, a TLR4 agonist. In the present study, we have used multiple TLR agonists to define the role of various PLA2s in macrophage AA release via TLRs. Activation of P388D1 and RAW2647.1 macrophage-like cells via TLR1/2, TLR2, TLR3, TLR4, TLR6/2, and TLR7, but not TLR5 or TLR9, resulted in AA mobilization that appears to involve the activation of both cPLA2 and sPLA2 but not of calcium-independent phospholipase A2. Furthermore, inhibition of sPLA2-V by RNA interference or by two cell-permeable compounds, namely scalaradial and manoalide, resulted in a marked reduction of the phosphorylation of ERK1/2 and cPLA2 via TLR1/2, TLR2, TLR3, and TLR4, leading to attenuated AA mobilization. Collectively, the results suggest a model whereby sPLA2-V contributes to the macrophage AA mobilization response via various TLRs by amplifying cPLA2 activation through the ERK1/2 phosphorylation cascade.


Journal of Lipid Research | 2012

Simultaneous Activation of p38 and JNK by Arachidonic Acid Stimulates the Cytosolic Phospholipase A2-dependent Synthesis of Lipid Droplets in Human Monocytes

Carlos Guijas; Gema Pérez-Chacón; Alma M. Astudillo; Julio M. Rubio; Luis Gil-de-Gómez; María A. Balboa; Jesús Balsinde

Exposure of human peripheral blood monocytes to free arachidonic acid (AA) results in the rapid induction of lipid droplet (LD) formation by these cells. This effect appears specific for AA in that it is not mimicked by other fatty acids, whether saturated or unsaturated. LDs are formed by two different routes: (i) the direct entry of AA into triacylglycerol and (ii) activation of intracellular signaling, leading to increased triacylglycerol and cholesteryl ester formation utilizing fatty acids coming from the de novo biosynthetic route. Both routes can be dissociated by the arachidonyl-CoA synthetase inhibitor triacsin C, which prevents the former but not the latter. LD formation by AA-induced signaling predominates, accounting for 60–70% of total LD formation, and can be completely inhibited by selective inhibition of the group IVA cytosolic phospholipase A2α (cPLA2α), pointing out this enzyme as a key regulator of AA-induced signaling. LD formation in AA-treated monocytes can also be blocked by the combined inhibition of the mitogen-activated protein kinase family members p38 and JNK, which correlates with inhibition of cPLA2α activation by phosphorylation. Collectively, these results suggest that concomitant activation of p38 and JNK by AA cooperate to activate cPLA2α, which is in turn required for LD formation possibly by facilitating biogenesis of this organelle, not by regulating neutral lipid synthesis.


Journal of Immunology | 2010

Markers of Monocyte Activation Revealed by Lipidomic Profiling of Arachidonic Acid-Containing Phospholipids

David Balgoma; Alma M. Astudillo; Gema Pérez-Chacón; Olimpio Montero; María A. Balboa; Jesús Balsinde

Stimulated human monocytes undergo an intense trafficking of arachidonic acid (AA) among glycerophospholipidclasses. Using HPLC coupled to electrospray ionization mass spectrometry, we have characterized changes in the levels of AA-containing phospholipid species in human monocytes. In resting cells, AA was found esterified into various molecular species of phosphatidylinositol (PI), choline glycerophospholipids (PCs), and ethanolamine glycerophospholipids (PEs). All major AA-containing PC and PI molecular species decreased in zymosan-stimulated cells; however, no PE molecular species was found to decrease. In contrast, the levels of three AA-containing species increased in zymosan-activated cells compared with resting cells: 1,2-diarachidonyl-glycero-3-phosphoinositol [PI(20:4/20:4)]; 1,2-diarachidonyl-glycero-3-phosphocholine [PC(20:4/20:4)]; and 1-palmitoleoyl-2-arachidonyl-glycero-3-phosphoethanolamine [PE(16:1/20:4)]. PI(20:4/20:4) and PC(20:4/20:4), but not PE(16:1/20:4), also significantly increased when platelet-activating factor or PMA were used instead of zymosan to stimulate the monocytes. Analysis of the pathways involved in the synthesis of these three lipids suggest that PI(20:4/20:4) and PC(20:4/20:4) were produced in a deacylation/reacylation pathway via acyl-CoA synthetase–dependent reactions, whereas PE(16:1/20:4) was generated via a CoA-independent transacylation reaction. Collectively, our results define the increases in PI(20:4/20:4) and PC(20:4/20:4) as lipid metabolic markers of human monocyte activation and establish lipidomics as a powerful tool for cell typing under various experimental conditions.


Biochimica et Biophysica Acta | 2011

Influence of cellular arachidonic acid levels on phospholipid remodeling and CoA-independent transacylase activity in human monocytes and U937 cells

Alma M. Astudillo; Gema Pérez-Chacón; David Balgoma; Luis Gil-de-Gómez; Violeta Ruipérez; Carlos Guijas; María A. Balboa; Jesús Balsinde

The availability of free arachidonic acid (AA) constitutes a limiting step in the synthesis of biologically active eicosanoids. Free AA levels in cells are regulated by a deacylation/reacylation cycle of membrane phospholipids, the so-called Lands cycle, as well as by further remodeling reactions catalyzed by CoA-independent transacylase. In this work, we have comparatively investigated the process of AA incorporation into and remodeling between the various phospholipid classes of human monocytes and monocyte-like U937 cells. AA incorporation into phospholipids was similar in both cell types, but a marked difference in the rate of remodeling was appreciated. U937 cells remodeled AA at a much faster rate than human monocytes. This difference was found not to be related to the differentiation state of the U937 cells, but rather to the low levels of esterified arachidonate found in U937 cells compared to human monocytes. Incubating the U937 cells in AA-rich media increased the cellular content of this fatty acid and led to a substantial decrease of the rate of phospholipid AA remodeling, which was due to reduced CoA-independent transacylase activity. Collectively, these findings provide the first evidence that cellular AA levels determine the amount of CoA-independent transacylase activity expressed by cells and provide support to the notion that CoA-IT is a major regulator of AA metabolism in human monocytes.


Journal of Immunology | 2010

Signaling Role for Lysophosphatidylcholine Acyltransferase 3 in Receptor-Regulated Arachidonic Acid Reacylation Reactions in Human Monocytes

Gema Pérez-Chacón; Alma M. Astudillo; Violeta Ruipérez; María A. Balboa; Jesús Balsinde

Cellular availability of free arachidonic acid (AA) is an important step in the production of pro- and anti-inflammatory eicosanoids. Control of free AA levels in cells is carried out by the action of phospholipase A2s and lysophospholipid acyltransferases, which are responsible for the reactions of deacylation and incorporation of AA from and into the sn-2 position of phospholipids, respectively. In this work, we have examined the pathways for AA incorporation into phospholipids in human monocytes stimulated by zymosan. Our data show that stimulated cells exhibit an enhanced incorporation of AA into phospholipids that is not secondary to an increased availability of lysophospholipid acceptors due to phospholipase A2 activation but rather reflects the receptor-regulated nature of the AA reacylation pathway. In vitro activity measurements indicate that the receptor-sensitive step of the AA reacylation pathway is the acyltransferase using lysophosphatidylcholine (lysoPC) as acceptor, and inhibition of the enzyme lysoPC acyltransferase 3 by specific small interfering RNA results in inhibition of the stimulated incorporation of AA into phospholipids. Collectively, these results define lysoPC acyltransferase 3 as a novel-signal–regulated enzyme that is centrally implicated in limiting free AA levels in activated cells.


Cancer Research | 2008

Levels of SCS7/FA2H-mediated fatty acid 2-hydroxylation determine the sensitivity of cells to antitumor PM02734

Ana B. Herrero; Alma M. Astudillo; María A. Balboa; Carmen Cuevas; Jesús Balsinde; Sergio Moreno

PM02734 is a novel synthetic antitumor drug that is currently in phase I clinical trials. To gain some insight into its mode of action, we used the yeast Saccharomyces cerevisiae as a model system. Treatment of S. cerevisiae with PM02734 rapidly induced necrosis-like cell death, as also found for mammalian cells treated with its close analogue kahalalide F. We have screened the complete set of 4,848 viable S. cerevisiae haploid deletion mutants to identify genes involved in sensitivity or resistance to PM02734. Forty-five percent of the 40 most sensitive strains identified had a role in intracellular vesicle trafficking, indicating that the drug severely affects this process. A mutant strain lacking the sphingolipid fatty acyl 2-hydroxylase Scs7 was found to be the most resistant to PM02734, whereas overexpression of Scs7 rendered the cells hypersensitive to PM02734. To validate these findings in human cells, we did small interfering RNA experiments and also overexpressed the Scs7 human homologue FA2H in human cancer cell lines. As in yeast, FA2H silencing turned the cells resistant to the drug, whereas FA2H overexpression led to an increased sensitivity. Moreover, exogenous addition of the 2-hydroxylated fatty acid 2-hydroxy palmitic acid to different human cell lines increased their sensitivity to the cytotoxic compound. Taken together, these results suggest that the cell membrane and, in particular, 2-hydroxy fatty acid-containing ceramides are important for PM02734 activity. These findings may have important implications in the development of PM02734 because tumor cells with high FA2H expression are expected to be particularly sensitive to this drug.


Journal of Hepatology | 2014

Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation

David Castaño; Eduardo Larequi; Idoia Belza; Alma M. Astudillo; Eduardo Martínez-Ansó; Jesús Balsinde; Josepmaria Argemi; Tomás Aragón; María J. Moreno-Aliaga; Jordi Muntané; Jesús Prieto; Matilde Bustos

BACKGROUND & AIMS Cardiotrophin-1 (CT-1) is a hepatoprotective cytokine that modulates fat and glucose metabolism in muscle and adipose tissue. Here we analyzed the changes in hepatic fat stores induced by recombinant CT-1 (rCT-1) and its therapeutic potential in non-alcoholic fatty liver disease (NAFLD). METHODS rCT-1 was administered to two murine NAFLD models: ob/ob and high fat diet-fed mice. Livers were analyzed for lipid composition and expression of genes involved in fat metabolism. We studied the effects of rCT-1 on lipogenesis and fatty acid (FA) oxidation in liver cells and the ability of dominant negative inhibitor of AMP-activated protein kinase (AMPK) to block these effects. RESULTS CT-1 was found to be upregulated in human and murine steatotic livers. In two NAFLD mouse models, treatment with rCT-1 for 10days induced a marked decrease in liver triglyceride content with augmented proportion of poly-unsaturated FA and reduction of monounsaturated species. These changes were accompanied by attenuation of inflammation and improved insulin signaling. Chronic administration of rCT-1 caused downregulation of lipogenic genes and genes involved in FA import to hepatocytes together with amelioration of ER stress, elevation of NAD(+)/NADH ratio, phosphorylation of LKB1 and AMPK, increased expression and activity of sirtuin1 (SIRT1) and upregulation of genes mediating FA oxidation. rCT-1 potently inhibited de novo lipogenesis and stimulated FA oxidation in liver cells both in vitro and in vivo. In vitro studies showed that these effects are mediated by activated AMPK. CONCLUSIONS rCT-1 resolves hepatic steatosis in obese mice by mechanisms involving AMPK activation. rCT-1 deserves consideration as a potential therapy for NAFLD.

Collaboration


Dive into the Alma M. Astudillo's collaboration.

Top Co-Authors

Avatar

Jesús Balsinde

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María A. Balboa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos Guijas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Luis Gil-de-Gómez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gema Pérez-Chacón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Clara Meana

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

David Balgoma

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Julio M. Rubio

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Violeta Ruipérez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patricia Lebrero

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge