Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Almudena Perona is active.

Publication


Featured researches published by Almudena Perona.


Journal of Chemical Theory and Computation | 2012

MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein-Protein Docking.

Javier Klett; Alfonso Núñez-Salgado; Helena Santos; Álvaro Cortés-Cabrera; Almudena Perona; Rubén Gil-Redondo; David Abia; Federico Gago; Antonio Morreale

An ultrafast and accurate scoring function for protein-protein docking is presented. It includes (1) a molecular mechanics (MM) part based on a 12-6 Lennard-Jones potential; (2) an electrostatic component based on an implicit solvent model (ISM) with individual desolvation penalties for each partner in the protein-protein complex plus a hydrogen bonding term; and (3) a surface area (SA) contribution to account for the loss of water contacts upon protein-protein complex formation. The accuracy and performance of the scoring function, termed MM-ISMSA, have been assessed by (1) comparing the total binding energies, the electrostatic term, and its components (charge-charge and individual desolvation energies), as well as the per residue contributions, to results obtained with well-established methods such as APBSA or MM-PB(GB)SA for a set of 1242 decoy protein-protein complexes and (2) testing its ability to recognize the docking solution closest to the experimental structure as that providing the most favorable total binding energy. For this purpose, a test set consisting of 15 protein-protein complexes with known 3D structure mixed with 10 decoys for each complex was used. The correlation between the values afforded by MM-ISMSA and those from the other methods is quite remarkable (r(2) ∼ 0.9), and only 0.2-5.0 s (depending on the number of residues) are spent on a single calculation including an all vs all pairwise energy decomposition. On the other hand, MM-ISMSA correctly identifies the best docking solution as that closest to the experimental structure in 80% of the cases. Finally, MM-ISMSA can process molecular dynamics trajectories and reports the results as averaged values with their standard deviations. MM-ISMSA has been implemented as a plugin to the widely used molecular graphics program PyMOL, although it can also be executed in command-line mode. MM-ISMSA is distributed free of charge to nonprofit organizations.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis, biological assessment and molecular modeling of 14-aryl-10,11,12,14-tetrahydro-9H-benzo[5,6]chromeno[2,3-b]quinolin-13-amines

Emna Maalej; Fakher Chabchoub; Abdelouahid Samadi; Cristóbal de los Ríos; Almudena Perona; Antonio Morreale; José Marco-Contelles

The synthesis and pharmacological evaluation of racemic 14-aryl-10,11,12,14-tetrahydro-9H-benzo[5,6]chromeno[2,3-b]quinolin-13-amines (19-28), prepared by Friedländer reaction of 3-amino-1-aryl-1H-benzo[f]chromene-2-carbonitriles (10-18) with suitable cycloalkanones is described. These molecules are potent, in the nanomolar range [IC(50) (EeAChE)=7-101 nM], and selective inhibitors of acetylcholinesterase (AChE). The most potent inhibitor, 4-(13-amino-10,11,12,14-tetrahydro-9H-benzo[5,6]chromeno[2,3-b]quinolin-14-yl)phenol (20) [IC(50) (EeAChE)=7±2 nM] is four-fold more active than tacrine. Kinetic studies on compound 20 showed that this is a mixed-type inhibitor of EeAChE with a K(i) of 5.00 nM. However, racemic 20 was unable to displace propidium iodide, suggesting that the inhibitor does not strongly bind to the peripheral anionic site (PAS) of AChE. Docking, molecular dynamics stimulations, and MM-GBSA calculations agree well with this behavior.


Journal of the American Chemical Society | 2013

Interactions of Bacterial Cell Division Protein FtsZ with C8- Substituted Guanine Nucleotide Inhibitors. A Combined NMR, Biochemical and Molecular Modeling Perspective

Filipa Marcelo; Sonia Huecas; Laura B. Ruiz-Avila; F. Javier Cañada; Almudena Perona; Ana Poveda; Sonsoles Martín-Santamaría; Antonio Morreale; Jesús Jiménez-Barbero

FtsZ is the key protein of bacterial cell-division and target for new antibiotics. Selective inhibition of FtsZ polymerization without impairing the assembly of the eukaryotic homologue tubulin was demonstrated with C8-substituted guanine nucleotides. By combining NMR techniques with biochemical and molecular modeling procedures, we have investigated the molecular recognition of C8-substituted-nucleotides by FtsZ from Methanococcus jannaschii (Mj-FtsZ) and Bacillus subtilis (Bs-FtsZ). STD epitope mapping and trNOESY bioactive conformation analysis of each nucleotide were employed to deduce differences in their recognition mode by each FtsZ species. GMP binds in the same anti conformation as GTP, whereas 8-pyrrolidino-GMP binds in the syn conformation. However, the anti conformation of 8-morpholino-GMP is selected by Bs-FtsZ, while Mj-FtsZ binds both anti- and syn-geometries. The inhibitory potencies of the C8-modified-nucleotides on the assembly of Bs-FtsZ, but not of Mj-FtsZ, correlate with their binding affinities. Thus, MorphGTP behaves as a nonhydrolyzable analog whose binding induces formation of Mj-FtsZ curved filaments, resembling polymers formed by the inactive forms of this protein. NMR data, combined with molecular modeling protocols, permit explanation of the mechanism of FtsZ assembly impairment by C8-substituted GTP analogs. The presence of the C8-substituent induces electrostatic remodeling and small structural displacements at the association interface between FtsZ monomers to form filaments, leading to complete assembly inhibition or to formation of abnormal FtsZ polymers. The inhibition of bacterial Bs-FtsZ assembly may be simply explained by steric clashes of the C8-GTP-analogs with the incoming FtsZ monomer. This information may facilitate the design of antibacterial FtsZ inhibitors replacing GTP.


Journal of Computer-aided Molecular Design | 2011

VSDMIP 1.5: an automated structure- and ligand-based virtual screening platform with a PyMOL graphical user interface

Álvaro Cortés Cabrera; Rubén Gil-Redondo; Almudena Perona; Federico Gago; Antonio Morreale

A graphical user interface (GUI) for our previously published virtual screening (VS) and data management platform VSDMIP (Gil-Redondo et al. J Comput Aided Mol Design, 23:171–184, 2009) that has been developed as a plugin for the popular molecular visualization program PyMOL is presented. In addition, a ligand-based VS module (LBVS) has been implemented that complements the already existing structure-based VS (SBVS) module and can be used in those cases where the receptor’s 3D structure is not known or for pre-filtering purposes. This updated version of VSDMIP is placed in the context of similar available software and its LBVS and SBVS capabilities are tested here on a reduced set of the Directory of Useful Decoys database. Comparison of results from both approaches confirms the trend found in previous studies that LBVS outperforms SBVS. We also show that by combining LBVS and SBVS, and using a cluster of ~100 modern processors, it is possible to perform complete VS studies of several million molecules in less than a month. As the main processes in VSDMIP are 100% scalable, more powerful processors and larger clusters would notably decrease this time span. The plugin is distributed under an academic license upon request from the authors.


Science Translational Medicine | 2016

First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases.

Aldo Borroto; Diana Reyes-Garau; M. Angeles Jiménez; Esther Carrasco; Beatriz Moreno; Sara Martinez-Pasamar; José R. Cortés; Almudena Perona; David Abia; Soledad Blanco; Manuel Fuentes; Irene Arellano; Juan M. García Lobo; Haleh Heidarieh; Javier Rueda; Pilar Esteve; Danay Cibrián; Ana Martínez-Riaño; Pilar Mendoza; Cristina Prieto; Enrique Calleja; Clara L. Oeste; Alberto Orfao; Manuel Fresno; Francisco Sánchez-Madrid; Antonio Alcami; Paola Bovolenta; Pilar Martín; Pablo Villoslada; Antonio Morreale

A novel inhibitor of interactions between signaling proteins in T cells demonstrates promising preventive and therapeutic effects in several models of autoimmune disease. Toning down T cell signaling to treat autoimmunity T cells are important for fighting infectious agents, but T cells that recognize the body’s own cells are often central to the development of autoimmune disease, leading Borroto et al. to develop a compound that hampers T cell signaling without completely blocking it. Treatment with this compound prevented or treated autoimmune disease in multiple mouse models, and the compound was demonstrated to skew human T cell differentiation toward less inflammatory subsets. Treatment with the compound did not prevent T cell pathogen responses in mice, suggesting that it would not leave patients susceptible to infection. Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR’s CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low–molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell–mediated autoimmune and inflammatory diseases.


Journal of Chemical Information and Modeling | 2012

CRDOCK: An Ultrafast Multipurpose Protein–Ligand Docking Tool

Álvaro Cortés Cabrera; Javier Klett; Helena Santos; Almudena Perona; Rubén Gil-Redondo; Sandrea M. Francis; Eva-María Priego; Federico Gago; Antonio Morreale

An ultrafast docking and virtual screening program, CRDOCK, is presented that contains (1) a search engine that can use a variety of sampling methods and an initial energy evaluation function, (2) several energy minimization algorithms for fine tuning the binding poses, and (3) different scoring functions. This modularity ensures the easy configuration of custom-made protocols that can be optimized depending on the problem in hand. CRDOCK employs a precomputed library of ligand conformations that are initially generated from one-dimensional SMILES strings. Testing CRDOCK on two widely used benchmarks, the ASTEX diverse set and the Directory of Useful Decoys, yielded a success rate of ~75% in pose prediction and an average AUC of 0.66. A typical ligand can be docked, on average, in just ~13 s. Extension to a representative group of pharmacologically relevant G protein-coupled receptors that have been recently cocrystallized with some selective ligands allowed us to demonstrate the utility of this tool and also highlight some current limitations. CRDOCK is now included within VSDMIP, our integrated platform for drug discovery.


Human Mutation | 2017

Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease

Irene Bravo-Alonso; Rosa Navarrete; Laura Arribas-Carreira; Almudena Perona; David Abia; María L. Couce; Angels García-Cazorla; Ana Morais; Rosario Domingo; María Antonia Ramos; Michael A. Swanson; Johan L.K. Van Hove; Magdalena Ugarte; Belén Pérez; Celia Pérez-Cerdá; Pilar Rodríguez-Pombo

The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early‐infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P‐protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P‐protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss‐of‐functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches.


Oncotarget | 2018

In silico-designed mutations increase variable new-antigen receptor single-domain antibodies for VEGF 165 neutralization

Dalia Millán-Gómez; Salvador Dueñas; Patricia L. A. Muñoz; Tanya Camacho Villegas; Carolina Elosua; Olivia Cabanillas-Bernal; Teresa Escalante; Almudena Perona; David Abia; Florian Drescher; Pierrick Fournier; Marco A. Ramos; Rosa E. Mares; Jorge Paniagua-Solis; Teresa Mata-Gonzalez; Jorge Gonzalez-Canudas; Robert M. Hoffman; Alexei Licea-Navarro; Noemí Sánchez Campos

The stability, binding, and tissue penetration of variable new-antigen receptor (VNAR) single-domain antibodies have been tested as part of an investigation into their ability to serve as novel therapeutics. V13 is a VNAR that recognizes vascular endothelial growth factor 165 (VEGF165). In the present study V13 was used as a parental molecule into which we introduced mutations designed in silico. Two of the designed VNAR mutants were expressed, and their ability to recognize VEGF165 was assessed in vitro and in vivo. One mutation (Pro98Tyr) was designed to increase VEGF165 recognition, while the other (Arg97Ala) was designed to inhibit VEGF165 binding. Compared to parental V13, the Pro98Tyr mutant showed enhanced VEGF165 recognition and neutralization, as indicated by inhibition of angiogenesis and tumor growth. This molecule thus appears to have therapeutic potential for neutralizing VEGF165 in cancer treatment.


Frontiers in Molecular Neuroscience | 2018

Modification of a Putative Third Sodium Site in the Glycine Transporter GlyT2 Influences the Chloride Dependence of Substrate Transport

Cristina Benito-Muñoz; Almudena Perona; David Abia; Helena Santos; Enrique Núñez; Carmen Aragón; Beatriz López-Corcuera

Neurotransmitter removal from glycine-mediated synapses relies on two sodium-driven high-affinity plasma membrane GlyTs that control neurotransmitter availability. Mostly glial GlyT1 is the main regulator of glycine synaptic levels, whereas neuronal GlyT2 promotes the recycling of synaptic glycine and supplies neurotransmitter for presynaptic vesicle refilling. The GlyTs differ in sodium:glycine symport stoichiometry, showing GlyT1 a 2:1 and GlyT2 a 3:1 sodium:glycine coupling. Sodium binds to the GlyTs at two conserved Na+ sites: Na1 and Na2. The location of GlyT2 Na3 site remains unknown, although Glu650 has been involved in the coordination. Here, we have used comparative MD simulations of a GlyT2 model constructed by homology to the crystalized DAT from Drosophila melanogaster by placing the Na3 ion at two different locations. By combination of in silico and experimental data obtained by biochemical and electrophysiological analysis of GlyTs mutants, we provide evidences suggesting the GlyT2 third sodium ion is held by Glu-250 and Glu-650, within a region with robust allosteric properties involved in cation-specific sensitivity. Substitution of Glu650 in GlyT2 by the corresponding methionine in GlyT1 reduced the charge-to-flux ratio to the level of GlyT1 without producing transport uncoupling. Chloride dependence of glycine transport was almost abolished in this GlyT2 mutant but simultaneous substitution of Glu250 and Glu650 by neutral amino acids rescued chloride sensitivity, suggesting that protonation/deprotonation of Glu250 substitutes chloride function. The differential behavior of equivalent GlyT1 mutations sustains a GlyT2-specific allosteric coupling between the putative Na3 site and the chloride site.


ACS Chemical Biology | 2015

Beyond a Fluorescent Probe: Inhibition of Cell Division Protein FtsZ by mant-GTP Elucidated by NMR and Biochemical Approaches

Sonia Huecas; Filipa Marcelo; Almudena Perona; Laura B. Ruiz-Avila; Antonio Morreale; F. Javier Cañada; Jesús Jiménez-Barbero

Collaboration


Dive into the Almudena Perona's collaboration.

Top Co-Authors

Avatar

Antonio Morreale

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

David Abia

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Helena Santos

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Klett

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rubén Gil-Redondo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdelouahid Samadi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristóbal de los Ríos

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

F. Javier Cañada

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge