Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Almut Grenz is active.

Publication


Featured researches published by Almut Grenz.


Circulation | 2007

Cardioprotection by Ecto-5'-Nucleotidase (CD73) and A2B Adenosine Receptors

Tobias Eckle; Thomas Krahn; Almut Grenz; David Köhler; Michel Mittelbronn; Catherine Ledent; Marlene A. Jacobson; Hartmut Osswald; Linda F. Thompson; Klaus Unertl; Holger K. Eltzschig

Background— Ecto-5′-nucleotidase (CD73)–dependent adenosine generation has been implicated in tissue protection during acute injury. Once generated, adenosine can activate cell-surface adenosine receptors (A1AR, A2AAR, A2BAR, A3AR). In the present study, we define the contribution of adenosine to cardioprotection by ischemic preconditioning. Methods and Results— On the basis of observations of CD73 induction by ischemic preconditioning, we found that inhibition or targeted gene deletion of cd73 abolished infarct size-limiting effects. Moreover, 5′-nucleotidase treatment reconstituted cd73−/− mice and attenuated infarct sizes in wild-type mice. Transcriptional profiling of adenosine receptors suggested a contribution of A2BAR because it was selectively induced by ischemic preconditioning. Specifically, in situ ischemic preconditioning conferred cardioprotection in A1AR−/−, A2AAR−/−, or A3AR−/− mice but not in A2BAR−/− mice or in wild-type mice after inhibition of the A2BAR. Moreover, A2BAR agonist treatment significantly reduced infarct sizes after ischemia. Conclusions— Taken together, pharmacological and genetic evidence demonstrate the importance of CD73-dependent adenosine generation and signaling through A2BAR for cardioprotection by ischemic preconditioning and suggests 5′-nucleotidase or A2BAR agonists as therapy for myocardial ischemia.


Journal of Clinical Investigation | 2008

A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice

Tobias Eckle; Almut Grenz; Stefanie Laucher; Holger K. Eltzschig

Although acute lung injury contributes significantly to critical illness, resolution often occurs spontaneously via activation of incompletely understood pathways. We recently found that mechanical ventilation of mice increases the level of pulmonary adenosine, and that mice deficient for extracellular adenosine generation show increased pulmonary edema and inflammation after ventilator-induced lung injury (VILI). Here, we profiled the response to VILI in mice with genetic deletions of each of the 4 adenosine receptors (ARs) and found that deletion of the A2BAR gene was specifically associated with reduced survival time and increased pulmonary albumin leakage after injury. In WT mice, treatment with an A2BAR-selective antagonist resulted in enhanced pulmonary inflammation, edema, and attenuated gas exchange, while an A2BAR agonist attenuated VILI. In bone marrow-chimeric A2BAR mice, although the pulmonary inflammatory response involved A2BAR signaling from bone marrow-derived cells, A2BARs located on the lung tissue attenuated VILI-induced albumin leakage and pulmonary edema. Furthermore, measurement of alveolar fluid clearance (AFC) demonstrated that A2BAR signaling enhanced amiloride-sensitive fluid transport and elevation of pulmonary cAMP levels following VILI, suggesting that A2BAR agonist treatment protects by drying out the lungs. Similar enhancement of pulmonary cAMP and AFC were also observed after beta-adrenergic stimulation, a pathway known to promote AFC. Taken together, these studies reveal a role for A2BAR signaling in attenuating VILI and implicate this receptor as a potential therapeutic target during acute lung injury.


PLOS Medicine | 2008

The Reno-Vascular A2B Adenosine Receptor Protects the Kidney from Ischemia

Almut Grenz; Hartmut Osswald; Tobias Eckle; Dan Yang; Hua Zhang; Zung Vu Tran; Karin Klingel; Katya Ravid; Holger K. Eltzschig

Background Acute renal failure from ischemia significantly contributes to morbidity and mortality in clinical settings, and strategies to improve renal resistance to ischemia are urgently needed. Here, we identified a novel pathway of renal protection from ischemia using ischemic preconditioning (IP). Methods and Findings For this purpose, we utilized a recently developed model of renal ischemia and IP via a hanging weight system that allows repeated and atraumatic occlusion of the renal artery in mice, followed by measurements of specific parameters or renal functions. Studies in gene-targeted mice for each individual adenosine receptor (AR) confirmed renal protection by IP in A1−/−, A2A−/−, or A3AR−/− mice. In contrast, protection from ischemia was abolished in A2BAR−/− mice. This protection was associated with corresponding changes in tissue inflammation and nitric oxide production. In accordance, the A2BAR-antagonist PSB1115 blocked renal protection by IP, while treatment with the selective A2BAR-agonist BAY 60–6583 dramatically improved renal function and histology following ischemia alone. Using an A2BAR-reporter model, we found exclusive expression of A2BARs within the reno-vasculature. Studies using A2BAR bone-marrow chimera conferred kidney protection selectively to renal A2BARs. Conclusions These results identify the A2BAR as a novel therapeutic target for providing potent protection from renal ischemia.


Circulation | 2007

CD39/Ectonucleoside Triphosphate Diphosphohydrolase 1 Provides Myocardial Protection During Cardiac Ischemia/Reperfusion Injury

David Köhler; Tobias Eckle; Marion Faigle; Almut Grenz; Michel Mittelbronn; Stefanie Laucher; Melanie L. Hart; Simon C. Robson; Christa E. Müller; Holger K. Eltzschig

Background— Extracellular adenosine, generated from extracellular nucleotides via ectonucleotidases, binds to specific receptors and provides cardioprotection from ischemia and reperfusion. In the present study, we studied ecto-enzymatic ATP/ADP-phosphohydrolysis by select members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family during myocardial ischemia. Methods and Results— As a first step, we used a murine model of myocardial ischemia and in situ preconditioning and performed pharmacological studies with polyoxometalate 1, a potent E-NTPDase inhibitor (Na6[H2W12O40]). Polyoxometalate 1 treatment increased infarct sizes and abolished beneficial effects of preconditioning. To define relative contributions of distinct E-NTPDases, we investigated transcriptional responses of E-NTPDases 1 to 3 and 8 to preconditioning. We noted robust and selective induction of E-NTPDase 1 (CD39) transcript and protein. Histological analysis of preconditioned myocardium localized CD39 induction to endothelia and myocytes. Cd39−/− mice exhibited larger infarct sizes with ischemia (cd39+/+ 43.0±3.3% versus cd39−/− 52%±1.8; P<0.05), and cardioprotection was abrogated by preconditioning (cd39+/+ 13.3%±1.5 versus cd39−/− 50.5%±2.8; P<0.01). Heightened levels of injury after myocardial ischemia and negligible preconditioning benefits in cd39−/− mice were corrected by infusion of the metabolic product (AMP) or apyrase. Moreover, apyrase treatment of wild-type mice resulted in 43±4.2% infarct size reduction (P<0.01). Conclusions— Taken together, these studies reveal E-NTPDase 1 in cardioprotection and suggest apyrase in the treatment of myocardial ischemia.


The FASEB Journal | 2007

Contribution of E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury

Almut Grenz; Hua Zhang; Marina Hermes; Tobias Eckle; Karin Klingel; Dan Yang Huang; Christa E. Müller; Simon C. Robson; Hartmut Osswald; Holger K. Eltzschig

Previous studies showed increased extracellular nucleotides during renal ischemia‐reperfusion. While nucleotides represent the main source for extracellular adenosine and adenosine signaling contributes to renal protection from ischemia, we hypothesized a role for ecto‐nucleoside‐triphosphate‐diphosphohydro‐lases (E‐NTPDases) in renal protection. We used a model of murine ischemia‐reperfusion and in situ ischemic preconditioning (IP) via a hanging weight system for atraumatic renal artery occlusion. Initial studies with a nonspecific inhibitor of E‐NTPDases (POM‐1) revealed inhibition of renal protection by IP. We next pursued transcriptional responses of E‐NTPDases (E‐NTPDasel‐3, and 8) to renal IP, and found a robust and selective induction of E‐NTPDase1/CD39 transcript and protein. Moreover, based on clearance studies, plasma electrolytes, and renal tubular histology, IP protection was abolished in gene‐targeted mice for cd39 whereas increased renal adenosine content with IP was attenuated. Furthermore, administration of apyrase reconstituted renal protection by IP in cd39−/− mice. Finally, apyrase treatment of wild‐type mice resulted in increased renal adenosine concentrations and a similar degree of renal protection from ischemia as IP treatment. Taken together, these data identify CD39‐dependent nucleotide phosphohydrolysis in renal protection. Moreover, the present studies suggest apyrase treatment as a novel pharmacological approach to renal diseases precipitated by limited oxygen availability.—Grenz, A., Zhang, H., Hermes, M., Eckle, T., Klingel, K., Huang, D. Y., Muller, C. E., Robson, S. C., Osswald, H., Eltzschig, H. K. Contribution of E‐NTPDasel (CD39) to renal protection from ischemia‐reperfusion injury. FASEB J. 21, 2863–2873 (2007)


Nature Medicine | 2011

Detrimental effects of adenosine signaling in sickle cell disease

Yujin Zhang; Yingbo Dai; Jiaming Wen; Weiru Zhang; Almut Grenz; Hong Sun; Lijian Tao; Guangxiu Lu; Danny Alexander; Michael V. Milburn; Louvenia Carter-Dawson; Dorothy E. Lewis; Wenzheng Zhang; Holger K. Eltzschig; Rodney E. Kellems; Michael R. Blackburn; Harinder S. Juneja; Yang Xia

Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease.


Journal of Immunology | 2011

Hypoxia-Inducible Factor-1α–Dependent Protection from Intestinal Ischemia/Reperfusion Injury Involves Ecto-5′-Nucleotidase (CD73) and the A2B Adenosine Receptor

Melanie L. Hart; Almut Grenz; Iris C. Gorzolla; Jens Schittenhelm; Julee H. Dalton; Holger K. Eltzschig

Intestinal ischemia/reperfusion injury (IR) is characterized by intermittent loss of perfusion to the gut, resulting in dramatic increases in morbidity and mortality. Based on previous studies indicating an anti-inflammatory role for hypoxia-inducible factor (HIF)-1–elicited enhancement of extracellular adenosine production via ecto-5′-nucleotidase (CD73) and signaling through the A2B adenosine receptor (A2BAR), we targeted HIF-1 during IR using pharmacological or genetic approaches. Initial studies with pharmacological HIF activation indicated attenuation of intestinal injury with dimethyloxallyl glycine (DMOG) treatment during murine IR. Although DMOG treatment was associated with induction of CD73 transcript and protein, DMOG protection was abolished in cd73−/− mice. Similarly, DMOG treatment enhanced A2BAR transcript and protein levels, whereas DMOG protection was abolished in A2BAR−/− mice. Finally, studies of mice with conditional HIF-1α deletion in intestinal epithelia or pharmacological inhibition of HIF-1 with 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin revealed enhanced tissue injury during IR. These studies indicated a tissue-protective role of HIF-dependent enhancement of intestinal adenosine generation and signaling during intestinal IR.


Journal of Clinical Investigation | 2012

Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice

Almut Grenz; Jessica D. Bauerle; Julee H. Dalton; Douglas Ridyard; Alexander Badulak; Eunyoung Tak; Eóin N. McNamee; Eric T. Clambey; Radu Moldovan; German Reyes; Jost Klawitter; Kelly Ambler; Kristann Magee; Uwe Christians; Katya Ravid; Doo Sup Choi; Jiaming Wen; Dmitriy Lukashev; Michael R. Blackburn; Hartmut Osswald; Imogen R. Coe; Bernd Nürnberg; Volker H. Haase; Yang Xia; Michail Sitkovsky; Holger K. Eltzschig

A complex biologic network regulates kidney perfusion under physiologic conditions. This system is profoundly perturbed following renal ischemia, a leading cause of acute kidney injury (AKI) - a life-threatening condition that frequently complicates the care of hospitalized patients. Therapeutic approaches to prevent and treat AKI are extremely limited. Better understanding of the molecular pathways promoting postischemic reflow could provide new candidate targets for AKI therapeutics. Due to its role in adapting tissues to hypoxia, we hypothesized that extracellular adenosine has a regulatory function in the postischemic control of renal perfusion. Consistent with the notion that equilibrative nucleoside transporters (ENTs) terminate adenosine signaling, we observed that pharmacologic ENT inhibition in mice elevated renal adenosine levels and dampened AKI. Deletion of the ENTs resulted in selective protection in Ent1-/- mice. Comprehensive examination of adenosine receptor-knockout mice exposed to AKI demonstrated that renal protection by ENT inhibitors involves the A2B adenosine receptor. Indeed, crosstalk between renal Ent1 and Adora2b expressed on vascular endothelia effectively prevented a postischemic no-reflow phenomenon. These studies identify ENT1 and adenosine receptors as key to the process of reestablishing renal perfusion following ischemic AKI. If translatable from mice to humans, these data have important therapeutic implications.


Journal of The American Society of Nephrology | 2011

Adenosine Generation and Signaling during Acute Kidney Injury

Jessica D. Bauerle; Almut Grenz; Jae-Hwan Kim; H. Thomas Lee; Holger K. Eltzschig

Acute kidney injury (AKI) is among the leading causes of morbidity and mortality in hospitalized patients. Particularly in the perioperative period, the most common cause of AKI is renal ischemia. At present, therapeutic modalities to prevent or treat AKI are extremely limited and the search for novel therapeutic interventions for ischemic AKI is an area of intense investigation. Recent studies implicate the endogenous signaling molecule, adenosine, in kidney protection from ischemia. As such, enzymatic production of adenosine from its precursor molecules ATP and AMP, and signaling events through adenosine receptors, play a critical role in attenuating renal inflammation and preserving kidney function during episodes of renal ischemia. Utilizing genetic mouse models with defects in adenosine generation or signaling provide strong evidence for the key role of extracellular adenosine in adapting renal tissues to limited oxygen availability and attenuating hypoxia-driven inflammation of the kidneys. Moreover, experimental therapeutics targeting individual adenosine receptors demonstrate strong prophylactic or therapeutic effects during murine AKI. If these experimental strategies can be translated into a clinical setting, adenosine receptor therapeutics may become an integral part in the prevention or treatment of AKI from renal ischemia.


Cellular Physiology and Biochemistry | 2003

Blunted Apoptosis of Erythrocytes from Taurine Transporter Deficient Mice

Philipp A. Lang; Ulrich Warskulat; Birgit Heller-Stilb; Dan Huang; Almut Grenz; Svetlana Myssina; Michael Duszenko; Florian Lang; Dieter Häussinger; Volker Vallon; Thomas Wieder

In nucleated cells cellular taurine is released prior to DNA fragmentation and the breakdown of phosphatidylserine asymmetry within the plasma membrane. Similar to what is seen in nucleated cells, phosphatidylserine asymmetry is also abolished in erythrocytes exposed to osmotic shock or oxidative stress. The present study has been performed to explore the sensitivity of erythrocytes from a taurine transporter knockout mouse (taut-/-) against osmotic shock and oxidative stress. Erythrocyte cell volume was estimated from forward scatter and breakdown of phosphatidylserine asymmetry was identified by determination of annexin binding using FACS analysis. Erythrocytes from taut-/- mice were compared to erythrocytes from wild type littermates (taut+/ +). Plasma concentration and erythrocyte content of taurine was significantly lower in taut-/- than in taut+/ + mice, but the intraerythrocyte taurine concentration did not exceed the plasma concentration. Hyperosmotic shock (exposure to 700 mOsm) and oxidative stress (exposure to 0.1 mM tert-butyl-hydroperoxide) significantly decreased the cell volume and increased the number of annexin binding sites of erythrocytes from both, taut-/- and taut+/ + mice. However, decrease of cell volume and increase of annexin binding was significantly blunted in erythrocytes from taut-/- mice as compared to their taut+/ + littermates. Stimulation of erythropoiesis by prior hemorrhage did not abrogate the difference between taut+/ + and taut-/- erythrocytes. The present observations point to a decreased sensitivity of mature erythrocytes from taut-/- mice to osmotic shock and oxidative stress, rendering them more resistant to apoptosis.

Collaboration


Dive into the Almut Grenz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Xia

University of Texas System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodney E. Kellems

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

Michael R. Blackburn

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Yujin Zhang

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

Tobias Eckle

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Weiru Zhang

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Lijian Tao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Renna Luo

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge